Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sugar Coffee

Tính: \(I=\int\dfrac{dx}{\sqrt{\left(x+1\right)\left(x+2\right)}}\)

Nguyễn Việt Lâm
11 tháng 1 2022 lúc 23:11

\(I=\int\dfrac{dx}{\sqrt{\left(x+\dfrac{3}{2}\right)^2+\dfrac{1}{4}}}\)

Đặt \(x+\dfrac{3}{2}=\dfrac{1}{2}tanu\Rightarrow dx=\dfrac{1}{2cos^2u}du\)

\(I=\int\dfrac{1}{\dfrac{1}{2}\sqrt{tan^2u+1}}.\dfrac{1}{2.cos^2u}du=\int\dfrac{1}{cosu}du=\int\dfrac{1}{1-sin^2u}d\left(sinu\right)\)

\(=\dfrac{1}{2}ln\left|\dfrac{1+sinu}{1-sinu}\right|+C=ln\left(\dfrac{1+sinu}{cosu}\right)+C=ln\left(\dfrac{1}{cosu}+tanu\right)+C\)

Chú ý: \(\dfrac{1}{cosu}=\sqrt{\dfrac{1}{cos^2u}}=\sqrt{1+tan^2u}=\sqrt{1+\left(2x+3\right)^2}=2\sqrt{x^2+3x+2}\)

Do đó: \(I=ln\left(2x+3+2\sqrt{x^2+3x+2}\right)+C\)

Nguyễn Việt Lâm
11 tháng 1 2022 lúc 23:48

Ủa giờ mới để ý tách biểu thức sai, \(x^2+3x+2=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\) mới đúng

Vậy làm cách khác:

Đặt \(\sqrt{\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}}=-\left(x+\dfrac{3}{2}\right)+t\)

\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-2t\left(x+\dfrac{3}{2}\right)+t^2\)

\(\Rightarrow x+\dfrac{3}{2}=\dfrac{\dfrac{1}{4}+t^2}{2t}=\dfrac{1}{8t}+\dfrac{t}{2}\)

\(\Rightarrow dx=\left(-\dfrac{1}{8t^2}+\dfrac{1}{2}\right)dt=\left(\dfrac{4t^2-1}{8t^2}\right)dt\)

Lại có: \(\sqrt{x^2+3x+2}=-\left(x+\dfrac{3}{2}\right)+t=-\dfrac{1}{8t}-\dfrac{t}{2}+t=\dfrac{t}{2}-\dfrac{1}{8t}=\dfrac{4t^2-1}{8t}\)

\(\Rightarrow\dfrac{1}{\sqrt{x^2+3x+2}}=\dfrac{8t}{4t^2-1}\)

Do đó:

\(I=\int\dfrac{8t}{4t^2-1}.\dfrac{4t^2-1}{8t^2}=\int\dfrac{1}{t}dt=ln\left|t\right|+C\)

\(=ln\left|\sqrt{x^2+3x+2}+\left(x+\dfrac{3}{2}\right)\right|+C=ln\left|2\sqrt{x^2+3x+2}+2x+3\right|+C\)

Lần này chắc ko nhầm nữa :D


Các câu hỏi tương tự
Nguyễn Văn Trí
Xem chi tiết
Hiền Lê Thị Thu
Xem chi tiết
-ios- -Catus-
Xem chi tiết
Phan Quỳnh Gia
Xem chi tiết
Phan Quỳnh Gia
Xem chi tiết
Sugar Coffee
Xem chi tiết
Sugar Coffee
Xem chi tiết
Sugar Coffee
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết