HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Mọi người giúp mình cách giải plss
Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(2\), cạnh bên bằng \(2\sqrt[]{2}\) . Gọi \(\alpha\) là góc tạo bởi hai mặt phẳng \(\left(SAC\right)\) và \(\left(SAB\right)\). Khi đó \(cos\alpha\) bằng
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\) ,\(SA=a\) và vuông góc với đáy \(\left(ABCD\right)\) .Gọi \(M\) là trung điểm của \(BC\).Tính cosin của góc giữa hai mặt phẳng \(\left(SMD\right)\) và \(\left(ABCD\right)\).
Biết\(I=\int\limits^5_2\dfrac{\left|x-2\right|}{x}dx=aln2+bln5+c\) với \(a,b,c\in Z\).Tìm \(a,b,c\)