Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Quỳnh Gia

Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(2\), cạnh bên bằng \(2\sqrt[]{2}\) Gọi \(\alpha\) là góc tạo bởi hai mặt phẳng \(\left(SAC\right)\)\(\left(SAB\right)\). Khi đó \(cos\alpha\) bằng

Akai Haruma
26 tháng 7 2021 lúc 23:27

Lời giải:
Gọi $O$ là tâm đáy thì $SO\perp (ABCD)$

Ta thấy:

$BO\perp AC, BO\perp SO\Rightarrow BO\perp (AC, SO)$

Hay $BO\perp (SAC)(*)$

Gọi $T$ là trung điểm $AB$, $OH\perp ST$. 

$OT\perp AB$

$SO\perp AB$

$\Rightarrow (SOT)\perp AB$

$\Rightarrow OH\perp AB$

Mà $OH\perp ST$

$\Rightarrow OH\perp (AB, ST)$ hay $OH\perp (SAB)(**)$

Từ $(*); (**)\Rightarrow \cos a=\cos \widehat{HOB}$

Trong đó:
$BO=\frac{2\sqrt{2}}{2}=\sqrt{2}$

$SO=\sqrt{SB^2-BO^2}=\sqrt{(2\sqrt{2})^2-(\sqrt{2})^2}=\sqrt{6}$

$ST=\sqrt{SO^2+OT^2}=\sqrt{6+1}=\sqrt{7}$

$OH=\frac{SO.OT}{ST}=\frac{\sqrt{6}.1}{\sqrt{7}}=\sqrt{\frac{6}{7}}$

Vì $OH\perp (SAB)$ nên tam giác $BHO$ vuông tại $H$. Do đó:
$\cos a=\cos \widehat{HOB}=\frac{HO}{OB}=\frac{\sqrt{6}}{\sqrt{7}.\sqrt{2}}=\frac{\sqrt{3}}{\sqrt{7}}$


 


Các câu hỏi tương tự
Thầy Cao Đô
Xem chi tiết
Suppawut Lemon
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết