Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thị Mai Trang
Xem chi tiết
Trần Mạnh
18 tháng 2 2021 lúc 21:25

câu a và b thay số vào là ra nhé, bài mik hơi khác:

Ta có m^2 + 2m + 3 = m^2 + 2m + 1 + 2 = (m + 1)^2 + 2 > 0 với mọi m.

 Suy ra hàm số đã cho đồng biến với mọi m với x > 0 và nghịch biến với x < 0

Nguyễn Lê Phước Thịnh
18 tháng 2 2021 lúc 21:27

a) Vì \(m^2+2m+5>0\forall m\) nên để hàm số \(y=\left(m^2+2m+5\right)x^2\) đồng biến thì x>0

b) Vì \(m^2+2m+5>0\forall m\) nên để hàm số \(y=\left(m^2+2m+5\right)x^2\) nghịch biến thì x<0

c) Thay x=1 và y=8 vào hàm số \(y=\left(m^2+2m+5\right)x^2\), ta được:

\(m^2+2m+5=8\)

\(\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow m^2+3m-m-3=0\)

\(\Leftrightarrow m\left(m+3\right)-\left(m+3\right)=0\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+3=0\\m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\)

Khánh An Ngô
Xem chi tiết
YangSu
1 tháng 8 2023 lúc 16:23

\(a,\) Hàm số đồng biến \(\Leftrightarrow a>0\Leftrightarrow\dfrac{m+1}{2m-3}>0\left(dk:m\ne\dfrac{3}{2}\right)\Leftrightarrow m+1>0\Leftrightarrow m>-1\)

\(\Leftrightarrow\left[{}\begin{matrix}m>-1\\m\ne\dfrac{3}{2}\end{matrix}\right.\)

\(b,\) Hàm số nghịch biến \(\Leftrightarrow a< 0\Leftrightarrow\dfrac{m+1}{2m-3}< 0\left(dk:m\ne\dfrac{3}{2}\right)\Leftrightarrow m+1< 0\Leftrightarrow m< -1\)

Nguyễn Quang Huy
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 3 2023 lúc 16:50

a.

Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)

b.

Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)

\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)

c.

Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)

\(\Rightarrow m>-\dfrac{3}{2}\)

Trúc Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2021 lúc 22:24

b)

Để hàm số \(y=\left(1-k^2\right)x-1\) là hàm số bậc nhất thì \(1-k^2\ne0\)

\(\Leftrightarrow k^2\ne1\)

hay \(k\notin\left\{1;-1\right\}\)

Để hàm số \(y=\left(1-k^2\right)x-1\) nghịch biến trên R thì \(1-k^2< 0\)

\(\Leftrightarrow k^2>1\)

\(\Leftrightarrow\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\)

Vậy: Khi \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\) thì hàm số \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\) nghịch biến trên R

Trần Khánh Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 19:57

a: Để hàm số đồng biến thì m-2>0

=>m>2

b: Để hàm số nghịch biến thì m-2<0

=>m<2

Trần Trang
Xem chi tiết
nguyễn thị hương giang
24 tháng 10 2021 lúc 11:29

a) Hàm số đồng biến trên R\(\Rightarrow a>0\Rightarrow m-2>0\Rightarrow m>2\)

b) Hàm số nghịch biến trên R

    \(\Leftrightarrow a< 0\Rightarrow m-2< 0\Rightarrow m< 2\)

Trúc Nguyễn
Xem chi tiết
Trương Huy Hoàng
11 tháng 1 2021 lúc 22:34

a, Để  y = (m - 1)x + 2m - 3 là hàm số bậc nhất thì a \(\ne\) 0 \(\Leftrightarrow\) m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) 1

y = (m - 1)x + 2m - 3 đồng biến trên R \(\Leftrightarrow\) a > 0 \(\Leftrightarrow\) m - 1 > 0 \(\Leftrightarrow\) m > 1

 y = (m - 1)x + 2m - 3 nghịch biến trên R \(\Leftrightarrow\) a < 0 \(\Leftrightarrow\) m - 1 < 0 \(\Leftrightarrow\) m < 1

b, f(1) = 2 

\(\Leftrightarrow\) (m - 1).1 + 2m - 3 = 2

\(\Leftrightarrow\) m - 1 + 2m - 3 = 2

\(\Leftrightarrow\) m = 2

Với m = 2 ta có:

f(2) = (2 - 1).2 + 2.2 - 3 = 3

Vậy f(2) = 3

c, f(-3) = 0

\(\Leftrightarrow\) (m - 1).0 + 2m - 3 = 0

\(\Leftrightarrow\) 2m = 3

\(\Leftrightarrow\) m = 1,5

Vì m > 1 (1,5 > 1)

\(\Rightarrow\) m - 1 > 0

hay a > 0

Vậy hàm số y = f(x) = (m - 1).x + 2m - 3 đồng biến trên R

Chúc bn học tốt!

𝓓𝓾𝔂 𝓐𝓷𝓱
11 tháng 1 2021 lúc 22:33

a) 

+) Hàm số đồng biến \(\Leftrightarrow m>1\)

+) Hàm số nghịch biến \(\Leftrightarrow m< 1\)

b) Ta có: \(f\left(1\right)=2\) 

\(\Rightarrow m-1+2m+3=2\) \(\Leftrightarrow m=0\)

\(\Rightarrow f\left(2\right)=\left(0-1\right)\cdot2+2\cdot0-3=-5\)

c) Hàm số là hàm hằng

 

Trương Huy Hoàng
11 tháng 1 2021 lúc 22:34
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 12 2017 lúc 10:21

a) y = –( m 2  + 5m) x 3  + 6m x 2  + 6x – 5

y′ = –3( m 2  + 5m) x 2  + 12mx + 6

Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.

Ta xét các trường hợp:

    +) m2 + 5m = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.

– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .

    +) Với  m 2  + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu

Δ' = 36 m 2  + 18( m 2  + 5m) ≤ 0 ⇔ 3 m 2  + 5m ≤ 0 ⇔ –5/3 ≤ m ≤ 0

– Với điều kiện đó, ta có –3( m 2  + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.

Vậy với điều kiện –5/3 ≤ m ≤ 0 thì hàm số đồng biến trên R.

b) Nếu hàm số đạt cực đại tại x = 1 thì y’(1) = 0. Khi đó:

y′(1) = –3 m 2  – 3m + 6 = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác, y” = –6( m 2  + 5m)x + 12m

    +) Với m = 1 thì y’’ = -36x + 12. Khi đó, y’’(1) = -24 < 0 , hàm số đạt cực đại tại x = 1.

    +) Với m = -2 thì y’’ = 36x – 24. Khi đó, y’’(1) = 12 > 0, hàm số đạt cực tiểu tại x = 1.

 

Vậy với m = 1 thì hàm số đạt cực đại tại x = 1.

Thuyy Duongg
Xem chi tiết