Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Yến Nga
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2021 lúc 15:42

Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý

Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)

Nguyễn Việt Lâm
19 tháng 4 2021 lúc 16:07

Câu 1 đề vẫn có vấn đề:

\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2\left(1+cot^2x\right)cot^2x}{\left(tanx-1\right)\left(tan^2x+1\right)cot^2x}=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^2x}{tanx-1}\)

\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^3x}{1-cotx}=\dfrac{1+cotx-2cot^3x}{1-cotx}\)

\(=\dfrac{\left(1-cotx\right)\left(1+2cotx+2cot^2x\right)}{1-cotx}=1+2cotx+2cot^2x\)

Có thể coi như ko thể rút gọn tiếp

2.

\(\sqrt{\left(1-cos^2x\right)^2+6cos^2x+3cos^4x}+\sqrt{\left(1-sin^2x\right)^2+6sin^2x+3sin^4x}\)

\(=\sqrt{4cos^4x+4cos^2x+1}+\sqrt{4sin^4x+4sin^2x+1}\)

\(=\sqrt{\left(2cos^2x+1\right)^2}+\sqrt{\left(2sin^2x+1\right)^2}\)

\(=2\left(cos^2x+sin^2x\right)+2=4\)

Le le
Xem chi tiết
Học Chăm Chỉ
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 10 2019 lúc 17:23

\(A=\sqrt{\left(1-cos^2x\right)^2+4cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4sin^2x}\)

\(=\sqrt{cos^4x+2cos^2x+1}+\sqrt{sin^4x+2sin^2x+1}\)

\(=\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)

\(=sin^2x+cos^2x+2=3\)

b/

\(3\left(sin^8x-cos^8x\right)=3\left(sin^4x+cos^4x\right)\left(sin^4x-cos^4x\right)\)

\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)\)

\(=3sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x-3cos^6x\)

\(\Rightarrow B=-5sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x+cos^6x+6sin^4x\)

\(=-5sin^6x-3sin^4x\left(1-sin^2x\right)+3cos^4x\left(1-cos^2x\right)+cos^6x+6sin^4x\)

\(=-2sin^6x-2cos^6x+3sin^4x+3cos^4x\)

\(=-2\left(1-3sin^2x.cos^2x\right)+3\left(1-2sin^2x.cos^2x\right)\)

\(=-2+3=1\)

Khách vãng lai đã xóa
Vương Hoàng Minh
Xem chi tiết
fu adam
Xem chi tiết
Nguyễn Thị Thùy Dương
12 tháng 11 2015 lúc 15:21

\(A=\cos^4x+2\sin^2x.\cos^2x\left(\sin^2x+\cos^2x\right)+\sin^4x+1\)

\(=\cos^4x+2\sin^2x.\cos^2x+\sin^4x+1\)

\(=\left(\sin^2x+\cos^2x\right)^2+1=1+1=2\)

tran duc huy
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 8 2020 lúc 8:33

5.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)

\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)

\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)

\(\Leftrightarrow sin^22x=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 8:35

6.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)

\(\Leftrightarrow-3sin^22x+sin2x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 7:57

1.

\(\Rightarrow4cos^3x.cos3x+4sin^3x.sin3x=\sqrt{2}\)

\(\Leftrightarrow\left(3cosx+cos3x\right)cos3x+\left(3sinx-sin3x\right)sin3x=\sqrt{2}\)

\(\Leftrightarrow3\left(cos3x.cosx+sin3x.sinx\right)+cos^23x-sin^23x=\sqrt{2}\)

\(\Leftrightarrow3cos2x+cos6x=\sqrt{2}\)

\(\Leftrightarrow3cos2x+4cos^32x-3cos2x=\sqrt{2}\)

\(\Leftrightarrow4cos^32x=\sqrt{2}\)

\(\Leftrightarrow cos2x=\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{4}+k2\pi\\2x=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\end{matrix}\right.\)

Hoang tung Ngo
Xem chi tiết
Trịnh Hương Giang
Xem chi tiết
Pumpkin Night
18 tháng 11 2019 lúc 13:44

\(A=\left|\sin^4x-\cos^4x\right|=\left|\left(\sin^2x\right)^2-\left(\cos^2x\right)^2\right|\)

\(A=\left|\left(1-\cos^2x\right)^2-\left(\cos^2x\right)^2\right|=\left|1-2\cos^2x+\cos^4x-\cos^4x\right|\)

\(=\left|1-2\cos^2x\right|=\left|\sin^2x-\cos^2x\right|=\left|\left(\sin x-\cos x\right)\left(\sin x+\cos x\right)\right|\)

\(\sin x+\cos x=m\Rightarrow\cos x=m-\sin x\Rightarrow\sin x-\cos x=\sin x-m+\sin x=2\sin x-m\)

\(\sin x+\cos x=m\Rightarrow\sin^2x+\cos^2x+2\sin x.\cos x=m^2\)

\(\Leftrightarrow2\sin x.\cos x=m^2-1\)

\(\left(\sin x-\cos x\right)^2=\sin^2x+\cos^2x-2\sin x.\cos x=1-2.\left(m^2-1\right)=1-2m^2+2=3-2m^2\)

\(\Rightarrow\sin x-\cos x=\sqrt{\left(\sin x-\cos x\right)^2}=\sqrt{3-2m^2}\)

\(A=\left|m\sqrt{3-2m^2}\right|=\left|m\right|.\left|\sqrt{3-2m^2}\right|\)

P/s: lm đc mỗi đến đây thui à, cái CM kia chịu nhoa :)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
20 tháng 11 2019 lúc 18:20

\(\left(sinx+cosx\right)^2=m^2\Rightarrow1+2sinx.cosx=m^2\)\(\Rightarrow2sinx.cosx=m^2-1\)

\(\Rightarrow\left(sinx-cosx\right)^2=\left(sinx+cosx\right)^2-4sinx.cosx=m^2-2\left(m^2-1\right)=2-m^2\)

\(\left(sinx-cosx\right)^2\ge0\) \(\forall x\Rightarrow2-m^2\ge0\Rightarrow m^2\le2\Rightarrow\left|m\right|\le\sqrt{2}\)

Ta lại có \(\left(sinx-cosx\right)^2=2-m^2\Rightarrow\left|sinx-cosx\right|=\sqrt{2-m^2}\)

\(A=\left|sin^4x-cos^4x\right|=\left|\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\right|\)

\(=\left|\left(sinx-cosx\right)\left(sinx+cosx\right)\right|\)

\(=\left|m\sqrt{2-m^2}\right|=\left|m\right|\sqrt{2-m^2}\)

Khách vãng lai đã xóa
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
18 tháng 5 2017 lúc 11:22

a) \(\left(sinx+cosx\right)^2=sin^2x+2sinxcosx+cos^2x\)\(=1+2sinxcosx\).
b) \(\left(sinx-cosx\right)^2=sin^2x-2sinxcosx+cos^2x\)\(=1-2sinxcosx\).
c) \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\)
\(=1-2sin^2xcos^2x\).