GPT sau:
a) 5/( x^2 +x -6 ) - 2/( x^2 + 4x + 3 ) = -3/( 2x-1 )
Gpt:
a.\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
b. \(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
c.\(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\Leftrightarrow\left(\sqrt{x^2-3x+2}-\sqrt{x-2}\right)-\left(\sqrt{x^2+2x-3}+\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\dfrac{\left(x^2-3x+2\right)-\left(x-2\right)}{\sqrt{x^2-3x+2}+\sqrt{x-2}}-\dfrac{\left(x^2+2x-3\right)-\left(x+3\right)}{\sqrt{x^2+2x-3}-\sqrt{x+3}}=0\)
\(\Leftrightarrow\dfrac{\left(x-2\right)^2}{\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x-2}}-\dfrac{\left(x-2\right)\left(x+3\right)}{\sqrt{\left(x+3\right)\left(x-1\right)}-\sqrt{x+3}}=0\)
\(\Leftrightarrow\left(x-2\right)\left[\dfrac{x-2}{\sqrt{x-2}\left(\sqrt{x-1}+1\right)}-\dfrac{x+3}{\sqrt{x+3}\left(\sqrt{x-1}-1\right)}\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\right]=0\)
Pt \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}=0\) vô no
(vì \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}< \dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\forall x\ge2\Rightarrow VT< 0\))
=> x - 2 = 0
<=> x = 2 (nhận)
\(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
\(\Leftrightarrow\dfrac{\left(4x+1\right)-\left(3x-2\right)}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)
\(\Leftrightarrow\dfrac{x+3}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)
\(\Leftrightarrow\left(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}\right)\left(x+3\right)=0\)
TH1:
x + 3 = 0
<=> x = - 3 (loại)
TH2:
\(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}=0\)
\(\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=5\)
\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)+\left(\sqrt{3x-2}-2\right)=0\)
\(\Leftrightarrow\dfrac{4x+1-9}{\sqrt{4x+1}+3}+\dfrac{3x-2-4}{\sqrt{3x-2}+2}=0\)
\(\Leftrightarrow\dfrac{4\left(x-2\right)}{\sqrt{4x+1}+3}+\dfrac{3\left(x-2\right)}{\sqrt{3x-2}+2}=0\)
\(\Leftrightarrow\left(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}\right)\left(x-2\right)=0\)
Pt \(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}>0\forall x\ge\dfrac{2}{3}\) => vô no
=> x - 2 = 0
<=> x = 2 (nhận)
~ ~ ~
Vậy x = 2
\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
\(\Leftrightarrow\sqrt{2\left(x^2+4x+3\right)}-\left[\left(2x+2\right)-\sqrt{x^2-1}\right]=0\)
\(\Leftrightarrow\sqrt{2\left(x+3\right)\left(x+1\right)}-\dfrac{\left(4x^2+8x+4\right)-\left(x^2-1\right)}{\sqrt{x^2-1}+2x+2}=0\)
\(\Leftrightarrow\sqrt{2\left(x+3\right)\left(x+1\right)}-\dfrac{\left(x+1\right)\left(3x+5\right)}{\sqrt{\left(x-1\right)\left(x+1\right)}+2\left(x+1\right)}=0\)
\(\Leftrightarrow\sqrt{x+1}\left[2\sqrt{x+3}-\dfrac{\sqrt{x+1}\left(3x+5\right)}{\sqrt{x+1}\left(\sqrt{x-1}+2\sqrt{x+1}\right)}\right]=0\)
\(\Leftrightarrow\sqrt{x+1}\left[2\sqrt{x+3}-\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}\right]=0\)
TH1
x + 1 = 0
<=> x = - 1 (loại)
TH2
\(2\sqrt{x+3}-\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}=0\)
mà \(2\sqrt{x+3}=\dfrac{4x+12}{2\sqrt{x+3}}>\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}\forall x\ge1\)
=> VT > 0
=> vô no
~ ~ ~
Vậy pt vô no
gpt :A= \(2x^2-5x-1=\sqrt{x+2}+\sqrt{4-x}\)
B= \(\sqrt{x^2-2x+5}+2\sqrt{4x+5}=x^3-2x^2+5x+4\)
Gpt:
a.\(\left(x^2-4x+3\right)^3+\left(x^2-7x+6\right)^3=\left(2x^2-11x+9\right)^3\)
b.\(\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2=0\)
a)Dat \(x^2-4x+3=a;x^2-7x+6=b \Rightarrow a+b=2x^2-11x+9\)
....
GPT: 2x(x-1)-3(x^2-4x)+x(x+2)=-3
giải phương trình sau
a, 6-4x=5(x+3)+3
b, \(\dfrac{x+3}{2}-1=\dfrac{x-1}{3}+\dfrac{x+5}{6}\)
c, (x-2)(2x+1) -3 (x-2) =0
d, \(\dfrac{2}{x^2-2x}+\dfrac{1}{x}=\dfrac{x+2}{x-2}\)
a: Ta có: \(6-4x=5(x+3)+3\)
\(\Leftrightarrow6-4x-5x-12-3=0\)
\(\Leftrightarrow-9x=9\)
hay x=-1
b: Ta có: \(\dfrac{x+3}{2}-1=\dfrac{x-1}{3}+\dfrac{x+5}{6}\)
\(\Leftrightarrow15x+45-30=10x-30+5x+25\)
\(\Leftrightarrow15=-5\left(loại\right)\)
c: Ta có: \(\left(x-2\right)\left(2x+1\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow2\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
d: Ta có: \(\dfrac{2}{x^2-2x}+\dfrac{1}{x}=\dfrac{x+2}{x-2}\)
\(\Leftrightarrow2+x-2=x^2+2x\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
giúp mk vs : gpt :
A= \(\sqrt{x^2-2x+5}+2\sqrt{4x+5}=x^3-2x^2+5x+4\)
để mk làm cho ; bài này dùng liên hợp
pt<=> \(x+1-\sqrt{x^2-2x+5}+2x+4-2\sqrt{4x+5}+x^3-2x^2+2x-1=0\) ( ĐKXĐ: \(x\ge-\frac{5}{4}\))
<=> \(\frac{x^2+2x+1-\left(x^2-2x+5\right)}{x+1+\sqrt{x^2-2x+5}}+\frac{\left(2x+4\right)^2-4\left(4x+5\right)}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=>: \(\frac{x^2+2x+1-x^2+2x-5}{x+1+\sqrt{x^2-2x+5}}+\frac{4x^2+16x+16-16x-20}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=> \(\frac{4x-4}{x+1+\sqrt{x^2-2x+5}}+\frac{4x^2-4}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=> \(\left(x-1\right)\left(\frac{4}{x+1+\sqrt{x^2-2x+5}}+\frac{4x+4}{2x+4+2\sqrt{4x+5}}+x^2-x+1\right)=0\)
<=> x=1 ( vì \(x\ge-\frac{5}{4}\)nên cái trong ngoặc thứ 2 khác 0)
vậy x=1
a, Gpt
x^4 -2x^3+4x^2-3x=4
b, /x+1/+/x-1/=1+/x^2-1/
1/ gpt
a/ \(x^2+4x+5=2\sqrt{2x+3}\)
b/ \(2x^2-8x-3\sqrt{x^2-4x-8}=18\)
2/ tìm nghiệm nguyên của pt : \(4y^2=2+\sqrt{199-2x-x^2}\)
Bài 2:
\(199-2x-x^2=200-(x^2+2x+1)=200-(x+1)^2\leq 200, \forall x\in\mathbb{Z}\)
\(\Rightarrow 4y^2=2+\sqrt{199-2x-x^2}\leq 2+\sqrt{200}\)
\(\Leftrightarrow y^2\leq \frac{2+\sqrt{200}}{4}< 9\)
\(\Rightarrow -3< y< 3\). Mà $y$ nguyên nên $y\in\left\{-2;-1;0;1;2\right\}$
Thay từng giá trị của $y$ vào PT ban đầu ta tìm được các cặp $(x,y)$ sau:
$(x,y)=(1,\pm 2); (-3,\pm 2); (13,\pm 1); (-15,\pm 1)$
Bài 1:
a) ĐKXĐ: \(x\geq \frac{-3}{2}\)
PT \(\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\)
\(\Leftrightarrow x^2+2x+1+(2x+3)-2\sqrt{2x+3}+1=0\)
\(\Leftrightarrow (x+1)^2+(\sqrt{2x+3}-1)^2=0\)
Vì $(x+1)^2\geq 0; (\sqrt{2x+3}-1)^2\geq 0$ với mọi $x\geq \frac{-3}{2}$ nên để tổng của chúng bằng $0$ thì $(x+1)^2=(\sqrt{2x+3}-1)^2=0$
$\Leftrightarrow x=-1$
Vậy $x=-1$
b) ĐKXĐ: \(x^2-4x-8\geq 0\)
PT \(\Leftrightarrow 2(x^2-4x-8)-3\sqrt{x^2-4x-8}=2\)
Đặt \(\sqrt{x^2-4x-8}=a(a\geq 0)\) thì PT trở thành:
\(2a^2-3a=2\)
\(\Leftrightarrow 2a^2-3a-2=0\Leftrightarrow (a-2)(2a+1)=0\)
\(\Rightarrow a=2\) (do $a\geq 0$)
\(\Leftrightarrow x^2-4x-8=4\)
\(\Leftrightarrow x^2-4x-12=0\Leftrightarrow \left[\begin{matrix} x=6\\ x=-2\end{matrix}\right.\) (đều thỏa mãn)
Bài 2:
\(199-2x-x^2=200-(x^2+2x+1)=200-(x+1)^2\leq 200, \forall x\in\mathbb{Z}\)
\(\Rightarrow 4y^2=2+\sqrt{199-2x-x^2}\leq 2+\sqrt{200}\)
\(\Leftrightarrow y^2\leq \frac{2+\sqrt{200}}{4}< 9\)
\(\Rightarrow -3< y< 3\). Mà $y$ nguyên nên $y\in\left\{-2;-1;0;1;2\right\}$
Thay từng giá trị của $y$ vào PT ban đầu ta tìm được các cặp $(x,y)$ sau:
$(x,y)=(1,\pm 2); (-3,\pm 2); (13,\pm 1); (-15,\pm 1)$
1) thực hiện các phép tính sau
a) 3x - 5/ 7+ 4x+ 5/7
b) 5xy - 4x/2x^2y^3 + 3xy+ 4y/2x^2y^3
c) x+1/X-5+x-18/x-5+x+2/x-5
2)
a) 2/x+3 + 1/x
b) x+1/2x-2+(-2x)/x^2-1
c) y - 12/6y- 36+ 6/ y^2- 6y
d) 6y/x+3x+3/2x+6