Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
crewmate
Xem chi tiết
Tạ Uyên
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 1 2022 lúc 23:53

\(\sqrt{x\left(1-y\right)\left(1-z\right)}=\sqrt{x\left(yz-y-z+1\right)}=\sqrt{x\left(yz-y-z+x+y+z+2\sqrt{xyz}\right)}\)

\(=\sqrt{x\left(yz+x+2\sqrt{xyz}\right)}=\sqrt{x^2+2x\sqrt{xyz}+xyz}=\sqrt{\left(x+\sqrt{xyz}\right)^2}\)

\(=x+\sqrt{xyz}\)

Tương tự: \(\sqrt{y\left(1-x\right)\left(1-z\right)}=y+\sqrt{xyz}\) ; \(\sqrt{z\left(1-x\right)\left(1-y\right)}=z+\sqrt{xyz}\)

\(\Rightarrow VT=x+y+z+3\sqrt{xyz}=1-2\sqrt{xyz}+3\sqrt{xyz}=1+\sqrt{xyz}\) (đpcm)

dinh huong
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Tất Đạt
Xem chi tiết
alibaba nguyễn
12 tháng 2 2019 lúc 7:55

Bài này à

alibaba nguyễn
12 tháng 2 2019 lúc 12:00

Gọi thương của phép chia là a thì ta có:

\(x^3+y^3+z^3=a\left(xyz\right)^2\)

Không mất tính tổng quát ta giả sử: \(x\ge y\ge z\)

Dễ thấy \(y^3+z^3⋮x^2\)

\(\Rightarrow y^3+z^3\ge x^2\left(1\right)\)

Ta lại có:

\(3x^3\ge x^3+y^3+z^3=a\left(xyz\right)^2\)

\(\Leftrightarrow3x\ge a\left(yz\right)^2\)

\(\Leftrightarrow9x^2\ge a^2y^4z^4\left(2\right)\)

Từ (1) và (2) suy ra

\(18y^3\ge9\left(y^3+z^3\right)\ge a^2y^4z^4\)

\(\Leftrightarrow z^5\le a^2yz^4\le18\)

\(\Leftrightarrow0< z\le1\)

\(\Leftrightarrow z=1\)

\(\Rightarrow a^2\le a^2y\le18\)

\(\Leftrightarrow1\le a\le4\)

Tự nhiên làm biếng quá thôi còn lại tự làm nốt nha bé.

Nguyễn Thành Phát
Xem chi tiết
Vương Hoàng Minh
Xem chi tiết
Trần Phạm Minh Nhựt
9 tháng 2 2016 lúc 22:21

Xét \(\left(x+y\right)\ge2\sqrt{xy}\)(1)

Tương tự ta có \(\left(z+y\right)\ge2\sqrt{zy}\)(2)

\(\left(x+z\right)\ge2\sqrt{xz}\)(3)
Nhân (1);(2);(3) theo vế ta được:\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)

=>\(\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\le\frac{xyz}{8xyz}=\frac{1}{8}\)

Đẳng thức xảy ra <=>x=y=z

ʚɞONLYღYOU╰❥
Xem chi tiết
☆ĐP◈Replay-Music
28 tháng 6 2019 lúc 16:06

Ta có  : \(\frac{1+x}{2}\ge\sqrt{x}\Rightarrow\left(\frac{1+x}{2}\right)^n\ge\sqrt{x^n}\) (1)

            \(\frac{1+y}{2}\ge\sqrt{y}\Rightarrow\left(\frac{1+y}{2}\right)^n\ge\sqrt{y^n}\)(2)

            \(\frac{1+z}{2}\ge\sqrt{z}\Rightarrow\left(\frac{1+z}{2}\right)^n\ge\sqrt{z^n}\)(3) 

Từ 1,2,3 \(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\)

Áp dụng BĐT Cauchy cho 3 số ta có : 

\(\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\ge3^3\sqrt{\sqrt{x^n}.\sqrt{y^n}.\sqrt{z^n}}=3\)

\(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge3\)

Đẳng thức xảy ra <=> x = y = z = 1 

dinh huong
Xem chi tiết