Ta có: \(2\left(x+y+z\right)=xyz\)
\(\Rightarrow1=\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}\)
G/s \(x\ge y\ge z\ge1\) khi đó:
\(1=2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\le\frac{3}{z^2}\Rightarrow z^2\le3\Rightarrow z=1\)
Thay vào: \(2x+2y+2=xy\)
\(\Leftrightarrow\left(xy-2x\right)-\left(2y-4\right)=6\)
\(\Leftrightarrow\left(x-2\right)\left(y-2\right)=6\)
Ta có: \(\hept{\begin{cases}x-2\ge-1\\y-2\ge-1\end{cases}}\) nên ta có các TH sau:
TH1: \(\hept{\begin{cases}x-2=6\\y-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=3\end{cases}}\)
TH2: \(\hept{\begin{cases}x-2=3\\y-2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}\)
Vậy \(\left(x,y,z\right)\in\left\{\left(8,3,1\right);\left(5,4,1\right)\right\}\) và 2 hoán vị