rút ngẫu nhiên 2 con bài từ bộ bài 52 lá. TÍnh xác suất để lấy được quân K.
Rút ngẫu nhiên đồng thời 2 lá bài từ bộ bài 52 lá. Tính xác suất rút được 2 lá bài cơ biết rằng hai lá này màu đỏ
Gọi A là biến cố "Rút được 2 lá bài cơ".
Số kết quả thuận lợi là \(\left|\Omega_A\right|=C^2_{13}=78\).
Số kết quả có thể xảy ra là \(\left|\Omega\right|=C^2_{52}=1326\).
\(\Rightarrow\) Xác suất xảy ra biến cố A là \(P\left(A\right)=\dfrac{78}{1326}=\dfrac{1}{17}\).
Bộ bài tú - lơ khơ có 52 quân bài. Rút ngẫu nhiên ra 4 quân bài. Tính xác suất của các biến cố A: “Rút ra được tứ quý K”.
A. P ( A ) = 1 270725
B. P ( A ) = 4 270725
C. P ( A ) = 1 6497400
D. P ( A ) = 1 54145
Ta có số cách chọn ngẫu nhiên 4 quân bài là: C 52 4 = 270725
Suy ra Ω = 270725
Vì bộ bài chỉ có 1 tứ quý K nên ta có Ω A = 1
Vậy P ( A ) = 1 270725
Đáp án A
Lấy ngẫu nhiên 3 quân bài từ bộ bài lơ khơ gồm 52 quân. Tìm xác suất để: (a) Lấy được 3 quân Át, (b) Lấy được 1 quân Át, (c) Lấy được 2 quân cơ.
Lời giải:
Lấy 3 quân ngẫu nhiên từ 52 quân có $C^3_{52}$ cách
a. Lấy được 3 quân át, có $C^3_4=4$ cách
Xác suất: $\frac{4}{C^3_{52}}=\frac{1}{5525}$
b. Lấy được 1 quân át, 2 quân còn lại khác, có $C^1_4.C^2_{48}$ cách
Xác suất: $\frac{C^1_4.C^2_{48}}{C^3_{52}}=\frac{1128}{5525}$
c.Lấy được 2 quân cơ, 1 quân bất kỳ, có:
$C^2_4.C^1_{48}$
Xác suất: $\frac{C^2_4.C^1_{48}}{C^3_{52}}=\frac{72}{5525}$
Lời giải:
Rút 5 trong 52 lá bài, có $C^5_{52}$ kết quả.
Rút 5 lá 10, J, Q, K, A đồng chất, có 4 kết quả (bích, tép, cơ, rô)
Xác suất rút được 5 lá thỏa mãn đề: $\frac{4}{C^5_{52}}$
Rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá. Tính xác suất của biến cố “Lá bài được chọn có màu đỏ hoặc là lá có số chia hết cho 5”.
Gọi \(A\) là biến cố “Hạt giống thứ nhất nảy mầm”, \(B\) là biến cố “Hạt giống thứ hai nảy mầm”.
\(P\left( A \right) = P\left( B \right) = 0,8 \Rightarrow P\left( {\bar A} \right) = P\left( {\bar B} \right) = 1 - 0,8 = 0,2\)
Xác suất để có đúng 1 trong 2 hạt giống đó nảy mầm là:
\(P\left( {A\bar B} \right) + P\left( {\bar AB} \right) = P\left( A \right).P\left( {\bar B} \right) + P\left( {\bar A} \right).P\left( B \right) = 0,8.0,2 + 0,2.0,8 = 0,32\)
Không gian mẫu: \(n(\Omega)=C^3_{52}=22100\)
Rút được 2 con K từ 4 con: \(C^2_4=6\)
Rút con còn lại từ 52-4=48 (lá còn lại): \(C_{48}^1=48\)
\(\Rightarrow n\left(A\right)=6.48=288\)
\(\Rightarrow p\left(A\right)=\dfrac{288}{22100}=\dfrac{72}{5525}\)
Bài 1.3. Một bộ bài Tủ- lơ-khơ có 52 quân bài. Lấy ngẫu nhiên ra 2 quân bài. Tính xác suất: a. Hai con bài lấy ra đều là con 2. b. Hai con bài lấy ra có một con 2 và một con dot At . c. Hai con bài lấy ra ít nhất có một con dot At .
Không gian mẫu: \(C_{52}^2\)
a. Lấy hai quân 2 (từ 4 quân 2) có \(C_4^2\) cách
Xác suất: \(P=\dfrac{C_4^2}{C_{52}^2}=...\)
b. Lấy 1 con 2 và một con Át có: \(C_4^1.C_4^1=16\) cách
Xác suất: \(P=\dfrac{16}{C_{52}^2}=...\)
c. Lấy ra 2 quân trong đó không có quân Át nào: \(C_{48}^2\) cách
\(\Rightarrow\) Có \(C_{52}^2-C_{48}^2\) cách lấy 2 con có ít nhất 1 con Át
Xác suất: \(P=\dfrac{C_{52}^2-C_{48}^2}{C_{52}^2}=...\)
Chọn ngẫu nhiên 5 quân bài trong bộ bài tú lơ khơ gồm 52 quân bài . Tính xác suất để trong 5 quân bài này có quân 2 rô , quân 3 pích , quân nhép và quân K cơ.
Nêu rõ cách giải .
Chọn ngẫu nhiên 5 quân bài trong bộ bài tú lơ khơ gồm 52 quân bài . Tính xác suất để trong 5 quân bài này có quân 2 rô , quân 3 pích , quân nhép và quân K cơ.
Nêu rõ cách giải .
Gọi A là biến cố: "Trong 5 quân bài lấy ra phải có quân 2 rô, quân 3 pích, quân 6 cơ, quân 10 nhép và quân K cơ''.
=> n(A) =1
Vì lấy quân 2 rô có 1 cách.
Lấy quân 3 pích có 1 cách.
Lấy quân 6 cơ có 1 cách.
Lấy quân 10 nhép có 1 cách.
Lấy quân K cơ có 1 cách.
\(\Rightarrow\) P(A) = 1/C5 (52)