Cho số nguyên dương n thoả mãn C n 1 , C n 2 , C n 3 lần lượt là số hạng thứ nhất, thứ 5 và thứ 15 của một cấp số cộng. Giá trị của n bằng
A. 9
B. 10
C. 11
D. 12
Cho nhị thức \(\left(2x^2+\dfrac{1}{x^3}\right)^n,\left(x\ne0\right)\) trong đó số nguyên dương n thoả mãn \(2^nC^0_n+2^{n-1}C^1_n+2^{n-2}C^2_n+...+C^n_n=59049\). Tìm số hạng chứa \(x^5\) trong khai triển.
`2^n C_n ^0+2^[n-1] C_n ^1+2^[n-2] +... +C_n ^n=59049`
`<=>(2+1)^n=59049`
`<=>3^n=59049`
`<=>n=10 =>(2x^2+1/[x^3])^10`
Xét số hạng thứ `k+1:`
`C_10 ^k (2x^2)^[10-k] (1/[x^3])^k ,0 <= k <= 10`
`=C_10 ^k 2^[10-k] x^[20-5k]`
Số hạng chứa `x_5` xảy ra `<=>20-5k=5<=>k=3`
Với `k=3` thì số hạng cần tìm là: `C_10 ^3 2^[10-3] x^5=15360 x^5`
1.Cho a,b,c là các số nguyên tố thoả mãn: ab + 1 = c. CMR: a2+ c hoặc b2+ c là số chính phương
2.Cho m,n là các số nguyên dương thoả mãn: m2+n2+m⋮mn. CMR: m là một số chính phương
2. Tìm các số tự nhiên n thoả mãn n2 +3n+2 là số nguyên tố.
3. Tìm các số tự nhiên n sao cho 2n +34 là số chính phương.
4. Chứng minh rằng tổng S = 14 +24 +34 +···+1004 không là số chính phương.
5. Tìm các số nguyên dương a ≤ b ≤ c thoả mãn abc,a+b+c,a+b+c+2 đều là các số nguyên tố
Mik gấp
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
2: A=n^2+3n+2=(n+1)(n+2)
Để A là số nguyên tố thì n+1=1 hoặc n+2=2
=>n=0
Có bao nhiêu số nguyên dương n không lớn hơn 2020 thoả mãn 14P3.(n−3)C(n−1) < 4A(n+1) ?
A. 2013. B. 2015. C. 2012. D. 2014
giải ra nha các bạn <3
Tìm hệ số của \(x^4\) trong khai triển của biểu thức P = \(\left(1-x-3x^3\right)^n\) thành đa thức, biết n là số nguyên dương thoả mãn \(2\left(C^2_2+C^2_3+...+C^2_n\right)=3A^2_{n+1}\).
\(C_2^2+C_3^2+...+C_n^2=C_3^3+C_3^2+C_4^2+...+C_n^2\) (do \(C_2^2=C_3^3=1\))
\(=C_4^3+C_4^2+C_5^2+...+C_n^2=C_5^3+C_5^2+...+C_n^2\)
\(=...=C_n^3+C_n^2=C_{n+1}^3\)
Do đó:
\(2C_{n+1}^3=3A_{n+1}^2\Leftrightarrow\dfrac{2.\left(n+1\right)!}{3!.\left(n-2\right)!}=\dfrac{3.\left(n+1\right)!}{\left(n-1\right)!}\)
\(\Leftrightarrow n-1=9\Rightarrow n=10\)
\(\Rightarrow P=\left(1-x-3x^3\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(-x-3x^3\right)^k\)
\(=\sum\limits^{10}_{k=0}C_{10}^k\left(-1\right)^k\left(x+3x^3\right)^k=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^kx^i.3^{k-i}.x^{3\left(k-i\right)}\)
\(=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^k.3^{k-i}.x^{3k-2i}\)
Ta có: \(\left\{{}\begin{matrix}0\le i\le k\le10\\i;k\in N\\3k-2i=4\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;2\right);\left(4;4\right)\)
Hệ số: \(C_{10}^2C_2^1\left(-1\right)^2.3^1+C_{10}^4C_4^4.\left(-1\right)^4.3^0=...\)
\(\Rightarrow he-so:\left[{}\begin{matrix}C^9_{10}C^1_9\left(-3\right)^{10-9}\left(-1\right)=270\\C^{10}_{10}C^4_{10}\left(-3\right)^{10-10}.\left(-1\right)^4=210\end{matrix}\right.\)
Cho a, b, c, d, m ,n là các số nguyên dương thoả mãn: a^3 + b = c^3 +d = m^3+n. Chứng minh rằng: Q = b^3 + a + d^3 + c + n^3 + m là hợp số
Đặt \(a^3+b=c^3+d=m^3+n=k\)
\(a^3\equiv a\left(mod3\right)\Rightarrow a^3+b\equiv a+b\left(mod3\right)\)
\(\Rightarrow a+b\equiv k\left(mod3\right)\)
Tương tự: \(c+d\equiv k\left(mod3\right)\) ; \(m+n\equiv k\left(mod3\right)\)
Lại có:
\(b^3\equiv b\left(mod3\right)\Rightarrow b^3+a\equiv a+b\left(mod3\right)\)
Tương tự ...
\(\Rightarrow Q\equiv a+b+c+d+m+n\left(mod3\right)\)
\(\Rightarrow Q\equiv k+k+k\left(mod3\right)\)
\(\Rightarrow Q\equiv3k\left(mod3\right)\)
\(\Rightarrow Q⋮3\)
Mà hiển nhiên Q>3 nên Q là hợp số
Cho các số nguyên dương a;b;c;m;n;p thoả mãn: a2+b2+c2=m2+n2+p2 Chứng minh rằng : a+b+c+m+n+p là hợp số
Cho m,n là số nguyên dương thoả mãn \(\left(m+n\right)^2+3m+n\) là số chính phương.
CMR: \(4mn+1\)là số chính phương
Cho m,n là số nguyên dương thoả mãn: \(\left(m+n\right)^2+3m+n\) là số chính phương
CMR: \(4mn+1\) là số chính phương
số nguyên dương n thoả mãn (3n + 14 ) chia hết cho ( n + 1)
3n+14 =3(n+1) +11 chia hết cho n+1 => 11 chia hết cho n+1
n+1 thuộc U(11) ={1;11}
+ n+1 =1 => n =0 loại
+n+1 =11 => n =10
Vậy n =10