Chứng minh các bất đẳng thức sau:
1 + 1 2 x - x 2 8 < 1 + x < 1 + 1 2 x
với 0 < x < + ∞
Chứng minh các bất đẳng thức sau: \(\dfrac{x^2+1}{x}\ge2\)
BĐT này sai nha bạn.
Nó chỉ đúng khi \(x>0\)
Với \(x>0\) thì bất đẳng thức tương đương với \(x^2+1\ge2x\)
\(\Leftrightarrow x^2-2x+1\ge0\) \(\Leftrightarrow\left(x-1\right)^2\ge0\) (luôn đúng)
\(\Rightarrow\) Điều cần chứng minh là đúng
Chứng minh các bất đẳng thức sau: \(\dfrac{x^2+1}{x}\ge2\left(x\ne0\right)\)
\(\dfrac{x^2+1}{x}=\dfrac{x^2}{x}+\dfrac{1}{x}=x+\dfrac{1}{x}\)
Theo bất đẳng thức Cô - si, ta có:
\(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}=2\sqrt{1}=2\)
Vậy \(\dfrac{x^2+1}{x}\ge2\)
1 cách chứng minh khác (chứng minh tương đương)
\(\dfrac{x^2+1}{x}\ge2\\ \Leftrightarrow x^2+1\ge2x\\ \Leftrightarrow x^2-2x+1=\left(x-1\right)^2\ge0\left(\text{luôn đúng}\right)\)
Vậy BĐT ban đầu được chứng minh
Chứng minh các bất đẳng thức sau 3n − 1 > n(n + 2) với n ≥ 4
Chứng minh các bất đẳng thức sau: tanx > sinx, 0 < x < π /2
Xét hàm số f(x) = tanx − sinx trên nửa khoảng [0; π /2);
x ∈ [0;1/2)
Dấu “=” xảy ra khi x = 0.
Suy ra f(x) đồng biến trên nửa khoảng [0; π /2)
Mặt khác, ta có f(0) = 0, nên f(x) = tanx – sinx > 0 hay tanx > sinx với mọi x ∈ [0; 1/2)
Chứng minh bất đẳng thức sau : Nếu 3x + 4y = 1 thì \(x^2+y^2\ge\frac{1}{25}\)
\(3x+4y=1\Leftrightarrow y=\dfrac{1-4y}{3}\)
\(\Rightarrow A=x^2+y^2\Leftrightarrow\left(\dfrac{1-4y}{3}\right)^2+y^2=\dfrac{\left(4y-1\right)^2}{9}+y^2=\dfrac{16y^2-8y+1+9y^2}{9}=\dfrac{25y^2-8y+1}{9}=\dfrac{\left(5y\right)^2-2.5y.\dfrac{4}{5}+\left(\dfrac{4}{5}\right)^2+\dfrac{9}{25}}{9}=\dfrac{\left(5y-\dfrac{4}{5}\right)^2+\dfrac{9}{25}}{9}\ge\dfrac{\dfrac{9}{25}}{9}=\dfrac{1}{25}\left(đpcm\right)\)
\(A_{min}=\dfrac{1}{25}\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{25}\\x=\dfrac{3}{25}\end{matrix}\right.\)
Áp dụng Bunhiacopski:
\(\left(x^2+y^2\right)\left(3^2+4^2\right)\ge\left(3x+4y\right)^2=1\\ \Leftrightarrow25\left(x^2+y^2\right)\ge1\Leftrightarrow x^2+y^2\ge\dfrac{1}{25}\)
Dấu \("="\Leftrightarrow\dfrac{x^2}{3^2}=\dfrac{y^2}{4^2}\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{3x+4y}{9+16}=\dfrac{1}{25}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{25}\\y=\dfrac{4}{25}\end{matrix}\right.\)
Chứng minh các bất đẳng thức sau ( n ∈ N ∗ ) sin 2 n α + cos 2 n α ≤ 1 .
Chứng minh các bất đẳng thức sau:
a) tanx > sinx, 0 < x < π/2
b)
với 0 < x < + ∞
a) Xét hàm số f(x) = tanx − sinx trên nửa khoảng [0; π/2);
x ∈ [0;1/2)
Dấu “=” xảy ra khi x = 0.
Suy ra f(x) đồng biến trên nửa khoảng [0; π/2)
Mặt khác, ta có f(0) = 0, nên f(x) = tanx – sinx > 0 hay tanx > sinx với mọi x ∈ [0; 1/2)
b) Xét hàm số h(x) trên [0; + ∞ )
Dấu “=” xẩy ra chỉ tại x = 0 nên h(x) đồng biến trên nửa khoảng [0; + ∞ ).
Vì h(x) = 0 nên
Hay
Xét hàm số trên f(x) trên [0; + ∞ );
Vì g(0) = 0 và g(x) đồng biến trên nửa khoảng [0; + ∞ ) nên g(x) ≥ 0, tức là f′(x) ≥ 0 trên khoảng đó và vì dấu “=” xảy ra chỉ tại x = 0 nên f(x) đồng biến trên nửa khoảng .
Mặt khác, ta có f(0) = 0 nên
Với mọi 0 < x < + ∞ .
Chứng minh các bất đẳng thức: x^2 + y^2 +1 lớn hơn hoặc bằng xy + x + y
Áp dụng BĐT Cô-si a2+b2>=2ab, ta đc:
x^2+y^2>=2.x.y=2xy
x^2+1>=2.x.1=2x
y^2+1>=2.y.1=2y
Cộng vế theo vế ba BĐT trên, ta đc: x^2+y^2+x^2+1+y^2+1>=2xy+2x+2y
(=) 2(x^2+y^2+1)>=2(xy+x+y)
(=)x^2+y^2+1>=xy+x+y.
Ta có : x^2 + y^2 +1 >= xy +x +y
<=> 2(x^2+y^2 +1) >=2 ( xy+x+y) (*nhân 2 vào cả 2 vế)
<=> 2x^2+2y^2+2 >= 2xy+2x+2y
<=> 2x^2+2y^2+2-2xy-2x-2y >= 0
<=> x^2-2xy+y^2+x^2-2x+1+y^2-2y+1 >=0
<=> (x-y)^2 + ( x-1)^2 +(y-1)^2 >= 0
+ Với x,y thì (x-y)^2 >= 0;(x-1)^2>=0;(y-1)^2>=0 nên ...(ghi lại dòng trên)
Vậy : x^2 +y^2+1 >= xy+x+y
Chứng minh các bất đẳng thức sau: tan x > x 0 < x < π 2
Xét hàm số y = f(x) = tanx – x trên khoảng (0; π/2)
Ta có: y’ = > 0 với ∀ x ∈ R.
⇒ hàm số đồng biến trên khoảng (0; π/2)
⇒ f(x) > f(0) = 0 với ∀ x > 0
hay tan x – x > 0 với ∀ x ∈ (0; π/2)
⇔ tan x > x với ∀ x ∈ (0; π/2) (đpcm).