Cho đường thẳng d : x - 1 3 = y + 2 - 1 = z 2 . Véc tơ nào dưới đây là một véc tơ chỉ phương của d
Cho đường thẳng (d): y=ax+b
a) Tìm a,b sao cho (d) đi qua A(1;-1) và song song với đường thẳng y=2x+3
b) Vẽ đường thẳng (d)
c) Tìm m sao cho 3 đường thẳng (d) và y=x+1 và y=(m-1).x+5 đồng qui.
a: Vì (d)//y=2x+3 nên a=2
Vậy: (d): y=2x+b
Thay x=1 và y=-1 vào (d), ta được:
b+2=-1
hay b=-3
c. Gọi: \(\left[{}\begin{matrix}y=x+1\left(d'\right)\\y=\left(m-1\right)x+5\left(d''\right)\end{matrix}\right.\)
Ta có: \(PTHDGD:\left(d\right)-\left(d'\right)\)
\(2x+3=x+1\)
\(\Rightarrow x=-2\left(1\right)\)
\(Thay\left(1\right)in\left(d'\right):y=-2+1=-1\)
\(\Rightarrow A\left(-2;-1\right)\)
Để 3 đt này đồng quy, thì \(A\left(-2;-1\right)\in\left(d''\right)\Leftrightarrow-1=-2m+2+5\)
\(\Rightarrow m=4\)
Cho đường thẳng (d): y=ax+b
a) Tìm a,b sao cho (d) đi qua A(1;-1) và song song với đường thẳng y=2x+3
b) Vẽ đường thẳng (d)
c) Tìm m sao cho 3 đường thẳng (d) và y=x+1 và y=(m-1).x+5 đồng qui.
a: Vì (d)//y=2x+3 nên a=2
Thay x=1 và y=-1 vào y=2x+b, ta được:
b+2=-1
hay b=-3
\(a,\Leftrightarrow\left\{{}\begin{matrix}a+b=-1\\a=2;b\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-3\end{matrix}\right.\\ c,\text{PT hoành độ giao điểm }\left(d\right)\text{ và }y=x+1\\ x+1=2x-3\Leftrightarrow x=4\Leftrightarrow y=5\Leftrightarrow A\left(4;5\right)\\ \text{Để 3 đt đồng quy thì }A\left(4;5\right)\in y=\left(m-1\right)x+5\\ \Leftrightarrow4m-4+5=5\Leftrightarrow m=1\)
Cho đường thẳng (d) :y=(m+1)x+m
câu 1 : giá trị m để đường thẳng (d) song song với đường thẳng (d1):y=2x+3
A:m=1 B:m=2 C:m=3 D: không có giá trị m
câu 2 : giá trị m để đường thẳng (d) trùng với đường thẳng (d2) y=x+3
A:m=1 B:m=2 C:m=0 D: không có giá trị m
câu 3 : giá trị m để đường thẳng (d) vuông góc với đường thẳng (d3) y=x+3
A:m=-1 B:m=-2 C:m=0 D: không có giá trị m
câu 4 : giá trị m để đường thẳng (d) cắt Parabol (P) y=x2 tại một điểm
A:m=1 B:m=2 C:m=3 D: không có giá trị m
câu 5 : giá trị m để đường thẳng (d) cắt Parabol (P) y=x2 tại hai điểm phân biệt có hoành độ x1, x2 thỏa x12+ x22= 1
A:m=1 B:m=2 C:m=3 D: không có giá trị m
Cho hàm số y=x-3 ( 1 ) có đồ thị là đường thẳng (d)
a) Vẽ dường thẳng (d) lên cùng 1 mặt phẳng tọa độ
b) Tìm a để đường thẳng (d) cắt đường thẳng y=(2a+1)x+4a+1 tại 1 điểm trên trục tung
c) Viết phương trình đường thẳng (d') song song đường thẳng (d) đi qua điểm A(2;3)
c: Vì (d)//(d') nên a=1
Vậy: (d'): y=x+b
Thay x=2 và y=3 vào (d'), ta được:
b+2=3
hay b=1
Cho đường thẳng (d): y=(m+2)x-m2 (m là tham số) .Tìm m để đường thẳng (d) và các đường thẳng y=x-1 ; x-2y=3 cắt nhau tại 1 điểm.
Ta có: y=x-1
nên x-1=y
=>x-y=1
Tọa độ giao điểm của hai đường x-y=1 và x-2y=3 là:
\(\left\{{}\begin{matrix}x-y=1\\x-2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Thay x=-1 và y=-2 vào y=(m+2)x-m2, ta được:
\(-m^2+\left(-1\right)\cdot\left(m+2\right)=-2\)
\(\Leftrightarrow-m^2-m-2=-2\)
\(\Leftrightarrow m^2+m=0\)
=>m=0 hoặc m=-1
`x-2y=3<=>y=1/2x-3/2`
Xét hệ ptr:`{(y=x-1),(y=1/2x-3/2):}`
`<=>{(1/2x+1/2=0<=>x=-1),(y=-1-1=-2):}`
Để `(d)` cắt các đường thẳng `y=x-1` và `x-2y=3` tại `1` điểm thì `3` đường thẳng này phải đồng quy
Tức là: `x=-1;y=-2` thuộc `(d)`
`=>-2=(m+2).(-1)-m^2`
`<=>m^2+m=0`
`<=>m(m+1)=0`
`<=>m=0` hoặc `m=-1`
Vậy `m={0;-1}`
cho đường thẳng (d):y=(m+2)x-m^2(m là tham số).tìm m để đường thẳng (d) và các đường thẳng y=x-1;x=2y=3 cắt nhau tại 1 điểm
Sửa đề: x+2y=3
Tọa độ giao là:
x-y=1 và x+2y=3
=>x=5/3 và y=2/3
Thay x=5/3 và y=2/3 vào (d), ta được"
5/3(m+2)-m^2=2/3
=>5/3m+10/3-m^2-2/3=0
=>-m^2+5/3m+8/3=0
=>-3m^2+5m+8=0
=>-3m^2+8m-3m+8=0
=>(3m-8)(-m-1)=0
=>m=-1 hoặc m=8/3
Cho các đường thẳng d1: x+y+3=0 , d2: x-y-4=0 , d3: x-2y=0. Tìm tọa độ điểm M nằm trên đường thẳng d3 sao cho khoảng cách từ M đến đường thẳng d1 bằng hai lần khoảng cách từ M đến đường thẳng d2
Do \(M\in d_3\) \(\Rightarrow M\left(2a;a\right)\)
\(\frac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=2\frac{\left|2a-a-4\right|}{\sqrt{1^2+\left(-1\right)^2}}\Leftrightarrow\left|3a+3\right|=2\left|a-4\right|\)
\(\Leftrightarrow\left(3a+3\right)^2=4\left(a-4\right)^2\Leftrightarrow9a^2+18a+9=4a^2-32a+64\)
\(\Leftrightarrow5a^2+50a-55=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)
Cho đường thẳng (d): y = (m + 3)x + 4 (m là tham số, m -3)
a) Tìm m để đường (d) song song với đường thẳng y = 4x + 3
b) Vẽ đường thẳng (d) ứng với m tìm được ở trên.
c) Tìm tọa độ giao điểm của (d) với đường thẳng y = x - 1
a: Để hai đường song thì m+3=4
=>m=1
c: (d): y=4x+4
Tọa độ giao điểm là:
4x+4=x-1 và y=x-1
=>3x=-5 và y=x-1
=>x=-5/3 và y=-8/3
1/ Cho hàm số y=(m-3).x+2 (với x là biến số , m≠3) có đồ thị là đường thẳng (d) trong mặt phẳng tọa độ Oxy
a) Tìm các giá trị của m để đường thẳng (d) song song với đường thẳng (d'):y=x-5
b) Vẽ đường thẳng (d) với giá trị m vừa tìm được.
a) (d) // (d') khi m - 3 = 1
m = 1 + 3
m = 4
Vậy m = 4 thì (d) // (d')
b) Với m = 4 ⇒ (d): y = x + 2
Đồ thị: