tìm x là số nghuyên
a) -8.x-1=55
b)2x-18=10
c)3x+26=5
tìm x
b ,3 (x-2) + 2( 3x - 5) = 10
c, 2x - (3x+1) = 5x-2
d, 3x + 2 = (-5) + 6
\(b,3\left(x-2\right)+2\left(3x-5\right)=10\\ \Leftrightarrow3x-6+6x-10=10\\ \Leftrightarrow3x+6x=10+10+6\\ \Leftrightarrow9x=26\\ \Leftrightarrow x=\dfrac{26}{9}\\ c,2x-\left(3x+1\right)=5x-2\\ \Leftrightarrow2x-3x-1=5x-2\\ \Leftrightarrow2x-3x-5x=-2+1\\ \Leftrightarrow-6x=-1\\ \Leftrightarrow x=\dfrac{1}{6}\\ d,3x+2=-5+6 \\ \Leftrightarrow3x=-5+6-2\\ \Leftrightarrow3x=-2\\ \Leftrightarrow x=-\dfrac{1}{3}\)
a: =>3x-6+6x-10=10
=>9x=26
=>x=26/9
b: =>5x-2=2x-3x-1
=>5x-2=-x-1
=>6x=1
=>x=1/6
d: =>3x+2=1
=>3x=-1
=>x=-1/3
tìm x biết
a,5x(x-4)3(x+2)(x-4)=2x(x+1)
b,4x(x+2)-x(8x-5)=10
c,(x+3)(2x-5)=2x(x+4)
d,(3x-2)(x+5)-3x(x+4)=5
e,x(x-3)+2x(x+1)=3(x mũ2-4)
b: =>4x^2+8x-8x^2+5x-10=0
=>-4x^2+13x-10=0
=>x=2 hoặc x=5/4
c: =>2x^2-5x+6x-15=2x^2+8x
=>x-15=8x
=>-7x=15
=>x=-15/7
d: =>3x^2+15x-2x-10-3x^2-12x=5
=>x-10=5
=>x=15
e: =>x^2-3x+2x^2+2x=3x^2-12
=>-x=-12
=>x=12
Bài 1:Thực hiện phép tính
a,(5-2x)(x+3)-4x(x+2) b,(3x+1)(x-3)-4(x+2)(x-2)
c,3(x-4)(x+3)+(x-5)(x+3) d,2x(x-4)+(3x-1)(2x-5)
Bài 2:Tìm x biết
a,5x(x+3)-(5x+2)(x+3)=7
b,(3x-1)(3x+2)-9(x+2)(x-2)=10
c,(x+1)(2x-5)+2(3-x)(x+2)=7
d,(1-3x)(x+2)+3x(x-5)=8
Tìm số nguyên x, biết:
a. 9 - x = 8 - (2x + 16)
b. 18 - 2x = 21 - (3x - 5)
a) Tìm số nguyên x, biết:
Với \(x\in Z\), ta có:
9 - x = 8 - (2x + 16)
<=> 9 - x = 8 - 2x - 16
<=> 9 - x = -2x - 8
<=> x = -17 (TM)
Vậy x = -17
b) Với \(x\in Z\), ta có:
18 - 2x = 21 - (3x - 5)
<=> 18 - 2x = 21 - 3x + 5
<=> 18 - 2x = 26 - 3x
<=> x = 8 (TM)
Vậy x = 8
a) Ta có: 9-x=8-(2x+16)
\(\Leftrightarrow9-x=8-2x-16\)
\(\Leftrightarrow9-x=-2x-8\)
\(\Leftrightarrow9-x+2x+8=0\)
\(\Leftrightarrow x+17=0\)
hay x=-17
Vậy: x=-17
b) Ta có: 18-2x=21-(3x-5)
\(\Leftrightarrow18-2x=21-3x+5\)
\(\Leftrightarrow18-2x+3x-26=0\)
\(\Leftrightarrow x-8=0\)
hay x=8
Vậy: x=8
Bài 1: Tìm x và y
a) x/4 = y/-5 và -3x + 2y = 55
b) x/y = -7/4 và 4x - 5y = 72
c) x/ -3 = y/8 và x2 - y2 = -44/5
d) 3x3 + y3 = 64/9
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{-5}=\dfrac{-3x+2y}{-12-10}=\dfrac{55}{-22}=\dfrac{-5}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{-20}{2}=-10\\y=\dfrac{25}{2}\end{matrix}\right.\)
b: Ta có: \(\dfrac{x}{y}=\dfrac{-7}{4}\)
nên \(\dfrac{x}{-7}=\dfrac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-7}=\dfrac{y}{4}=\dfrac{4x-5y}{-28-20}=\dfrac{72}{-48}=\dfrac{-3}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{21}{2}\\y=\dfrac{-12}{2}=-6\end{matrix}\right.\)
c) \(\dfrac{x}{-3}=\dfrac{y}{8}\)
⇒\(\dfrac{x^2}{-9}=\dfrac{y^2}{64}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{-9}=\dfrac{y^2}{64}=-\dfrac{44}{\dfrac{5}{-9+64}}=-\dfrac{44}{\dfrac{5}{55}}=-484\)
Tìm x, biết:
A, -16 + 23 + x = -16
B, 10 – 2 ( 4 – 3x ) = -4
C, -12 + 3 ( -x + 7 ) = -18
D, 24 : ( 3x – 2 ) = -3
E, | x + 8 | – 7 = 8
F, -45 : 5 nhân ( -3 – 2x ) = 3
G, | x – 1 | = 0
H, -13 nhân | x | = -26
A,-16+23+x=-16
<=>x=-16+16-23
<=>x=-23
B,10-2(4-3x)=-4
<=>10-8+6x=-4
<=>6x=-4-10+8
<=>6x=-6
<=>x=-1
C,-12+3(-x+7)=-18
<=>-12-3x+21=-18
<=>-3x=-18+12-21
<=>-3x=-27
<=>x=9
D,24:(3x-2)=-3
<=>24/(3x-2)=-3
<=>-3(3x-2)=24
<=>3x-2=-8
<=>3x=-6
<=>x=-2
E,|x+8|-7=8
<=>|x+8|=15
<=>x+8=+-15
Chia 2 TH:
TH1:x+8=15
<=>x=7
TH2:x+8=-15
<=>x=-23
F,-45:5(-3-2x)=3
<=>-9(-3-2x)=3
<=>27+18x=3
<=>18x=-24
<=>x=-4/3
G,|x-1|=0
<=>x-1=0
<=>x=1
H,-13|x|=-26
<=>|x|=2
<=>x=+-2
a) -16 + 23 + x = -16
x = -16 + 16 - 23
x = -23
Vậy x = -23
b) 10 - 2. (4 - 3x) = -4
10 - 2 . 4 + 2. 3x = -4
10 - 8 + 6x = -4
6x = -4 - 10 + 8
6x = -6
x = (-6) : 6
x = -1
Vậy x = -1
c) -12 + 3. (-x + 7) = -18
-12 + 3. (-x) + 3. 7 = -18
-12 + (-3x) + 21 = -18
-3x = -18 + 12 - 21
-3x = -27
x = (-27) : (-3)
x = -9
Vậy x = -9
d) 24 : (3x - 2) = -3
3x - 2 = 24 : (-3)
3x - 2 = -8
3x = -8 + 2
3x = -6
x = (-6) : 3
x = -2
Vậy x = -2
e) lx + 8l - 7 = 8
lx + 8l = 8 + 7
lx + 8l = 15
\(\Rightarrow\hept{\begin{cases}x+8=15\\x=18-5\\x=13\end{cases}hay\hept{\begin{cases}x+8=-15\\x=-15-8\\x=-23\end{cases}}}\)
Vậy \(x\in\left\{13;-23\right\}\)
f) (-45) : 5. (-3 - 2x) = 3
(-9). (-3 - 2x) = 3
(-9). (-3) + 9. 2x = 3
27 + 18x = 3
18x = 3 - 27
18x = -24
x = (-24) : 18
x =\(\frac{-4}{3}\)
Vậy x =\(\frac{-4}{3}\)
g) lx - 1l = 0
\(\Rightarrow x-1=0\)
x = 0 + 1
x = 1
Vậy x = 1
h) (-13). lxl = -26
lxl = (-26) : (-13)
lxl = 2
\(\Rightarrow x=2\)
Vậy x = 2
Chúc bạn học tốt!!!
Tìm số nguyên dương x sao cho 5x +13 là bội của 2x+1
Tìm x biết (2x-18).(3x+12)=0
Tính S= 1-2-3+4+
5-6-7+8+...+2021-2022-2023+2024+2025
1. Giải:
Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)
\(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)
\(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)
Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.
⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)
Ta có bảng:
2x+1 | 1 | 3 | 7 | 21 |
x | 0 | 1 | 3 | 10 |
TM | TM | TM | TM |
Vậy xϵ\(\left\{0;1;3;10\right\}.\)
2. Giải:
Do (2x-18).(3x+12)=0.
⇒ 2x-18=0 hoặc 3x+12=0.
⇒ 2x =18 3x =-12.
⇒ x =9 x =-4.
Vậy xϵ\(\left\{-4;9\right\}.\)
3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.
S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.
S= 0 + 0 + ... + 0 + 2025.
⇒S= 2025.
Tìm x biết:
a.\(\sqrt{18x}+2\sqrt{8x}-3\sqrt{2x}=12\)
b.\(\sqrt{9x+18}+2\sqrt{36x+72}-\sqrt{4x+8}=26\)
c.\(\sqrt{\left(x-2\right)^2}=10\)
d.\(\sqrt{9x^2-6x+1}=15\)
e.\(\sqrt{3x+4}=3x-8\)
c) \(\sqrt{\left(x-2\right)^2}=10\)
\(x-2=10\)
\(x=12\)
d) \(\sqrt{9x^2-6x+1}=15\)
\(\sqrt{\left(3x\right)^2-2.3x.1+1^2}=15\)
\(\sqrt{\left(3x-1\right)^2}=15\)
\(3x-1=15\)
\(3x=16\)
\(x=\dfrac{16}{3}\)
a) \(đk:x\ge0\)
\(pt\Leftrightarrow3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)
\(\Leftrightarrow4\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=3\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\)
b) \(đk:x\ge-2\)
\(pt\Leftrightarrow3\sqrt{x+2}+12\sqrt{x+2}-2\sqrt{x+2}=26\)
\(\Leftrightarrow13\sqrt{x+2}=26\)
\(\Leftrightarrow\sqrt{x+2}=2\Leftrightarrow x+2=4\Leftrightarrow x=2\left(tm\right)\)
c) \(pt\Leftrightarrow\left|x-2\right|=10\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=10\\x-2=-10\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-8\end{matrix}\right.\)
d) \(pt\Leftrightarrow\sqrt{\left(3x-1\right)^2}=15\)
\(\Leftrightarrow\left|3x-1\right|=15\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=15\\3x-1=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{3}\\x=-\dfrac{14}{3}\end{matrix}\right.\)
e) \(đk:x\ge\dfrac{8}{3}\)
\(pt\Leftrightarrow3x+4=9x^2-48x+64\)
\(\Leftrightarrow9x^2-51x+60=0\)
\(\Leftrightarrow3\left(x-4\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)
a. \(\sqrt{18x}+2\sqrt{8x}-3\sqrt{2x}=12\) ĐK: \(x\ge0\)
<=> \(\sqrt{9.2x}+2\sqrt{4.2x}-3\sqrt{2x}=12\)
<=> \(3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)
<=> \(\sqrt{2x}\left(3+4-3\right)=12\)
<=> \(4\sqrt{2x}=12\)
<=> \(\sqrt{2x}=12:4\)
<=> \(\sqrt{2x}=3\)
<=> 2x = 32
<=> 2x = 9
<=> \(x=\dfrac{9}{2}\) (TM)
b. \(\sqrt{9x+18}+2\sqrt{36x+72}-\sqrt{4x+8}=26\) ĐK: \(x\ge-2\)
<=> \(\sqrt{9\left(x+2\right)}+2\sqrt{36\left(x+2\right)}-\sqrt{4\left(x+2\right)}=26\)
<=> \(3\sqrt{x+2}+72\sqrt{x+2}-2\sqrt{x+2}=26\)
<=> \(\sqrt{x+2}\left(3+72-2\right)=26\)
<=> \(73\sqrt{x+2}=26\)
<=> \(\sqrt{x+2}=\dfrac{26}{73}\)
<=> x + 2 = \(\left(\dfrac{26}{73}\right)^2\)
<=> x + 2 = \(\dfrac{676}{5329}\)
<=> \(x=\dfrac{676}{5329}-2\)
<=> \(x=-1,873146932\) (TM)
c. \(\sqrt{\left(x-2\right)^2}=10\)
<=> \(\left|x-2\right|=10\)
<=> \(\left[{}\begin{matrix}x-2=10\left(x\ge2\right)\\x-2=-10\left(x< 2\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=12\left(TM\right)\\x=-8\left(TM\right)\end{matrix}\right.\)
d. \(\sqrt{9x^2-6x+1}=15\)
<=> \(\sqrt{\left(3x-1\right)^2}=15\)
<=> \(\left|3x-1\right|=15\)
<=> \(\left[{}\begin{matrix}3x-1=15\left(x\ge\dfrac{16}{3}\right)\\3x-1=-15\left(x< \dfrac{16}{3}\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{16}{3}\left(TM\right)\\x=\dfrac{-14}{3}\left(TM\right)\end{matrix}\right.\)
e. \(\sqrt{3x+4}=3x-8\) ĐK: \(x\ge\dfrac{-4}{3}\)
<=> 3x + 4 = (3x - 8)2
<=> 3x + 4 = 9x2 - 48x + 64
<=> 9x2 - 3x - 48x + 64 - 4 = 0
<=> 9x2 - 51x + 60 = 0
<=> 9x2 - 36x - 15x + 60 = 0
<=> 9x(x - 4) - 15(x - 4) = 0
<=> (9x - 15)(x - 4) = 0
<=> \(\left[{}\begin{matrix}9x-15=0\\x-4=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{15}{9}\left(TM\right)\\x=4\left(TM\right)\end{matrix}\right.\)
Bài 1: Tìm số nguyên x, biết:
a) 2x + 3 là bội của x
b) 2x + 1 là ước của 4x – 8
c) x2 + x – 7 chia hết cho x + 1
Bài 2: Tìm các số nguyên x, y biết:
a) (x – 2) (y + 3) = 7
b) (x + 1) (2y – 3) = 10
c) xy – 3x = -19
d) 3x + 4y – xy = 16
Bài 3:Tìm x:
a,15-3(x-2)=21
b,x-14=3x+18
c,(x+5)+(x-9)=x+2
d,x-14=3x+18