Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Hà Quang Minh
24 tháng 8 2023 lúc 1:01

Khoảng giá trị của x mà đồ thị hàm số \(y=log_2x\) nằm phía trên đường thẳng y = 2 là \(\left(4;+\infty\right)\)

\(\Rightarrow\) Tập nghiệm của bất phương trình \(log_2x>2\) là \(\left(4;+\infty\right)\)

Ngọc Trần
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 9:17

\(a,\Leftrightarrow3m-1=m+3\Leftrightarrow2m=4\Leftrightarrow m=2\\ b,\Leftrightarrow3m-1\ne m+3\Leftrightarrow m\ne2\)

Trần Lê Vy
Xem chi tiết
HT.Phong (9A5)
24 tháng 10 2023 lúc 7:04

a) Ta có: \(y=\sqrt{m-3}\cdot x+\dfrac{2}{3}\left(m\ge3\right)\) 

Để đây là hàm số bậc nhất thì: \(\sqrt{m-3}\ne0\Leftrightarrow m=3\) 

Do: \(\sqrt{m-3}\ge0\forall m\ge3\) 

Nên với \(m\ge3\) thì y đồng biến trên R 

b) Ta có: \(y=\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}\cdot x+2010\left(m\ge0;m\ne5\right)\)

Để đây là hàm số bậc nhất thì: \(\sqrt{m}-\sqrt{5}\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m\ne5\end{matrix}\right.\) 

Do \(\sqrt{m}+\sqrt{5}>0\Rightarrow\sqrt{m}-\sqrt{5}< 0\Leftrightarrow m< 5\)

Vậy với 0 ≤ m < 5 thì y nghịch biến trên R

Kiều Vũ Linh
24 tháng 10 2023 lúc 10:45

a) Để hàm số là hàm số bậc nhất thì:

√(m - 3) > 0

⇔ m - 3 > 0

⇔ m > 3

Vậy với m > 3 thì hàm số đã cho là hàm bậc nhất

b) Để hàm số là hàm bậc nhất thì √m - √5 ≠ 0 và m ≥ 0

⇔ √m ≠ √5

⇔ m ≠ 5

Vậy m ≠ 5 và m ≥ 0 thì hàm số đã cho làm hàm số bậc nhất

*) Để hàm số ở câu a là hàm đồng biến thì m > 3

*) Để hàm số ở câu b là hàm nghịch biến thì √m < √5

⇔ 0 \(\le\) m < 5

Vậy 0 \(\le\) m < 5 thì hàm số ở câu b là hàm số nghịch biến

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 19:11

a) Với \(x = 1\) thì \(y = {\log _2}1 = 0\)

Với \(x = 2\) thì \(y = {\log _2}2 = 1\)

Với \(x = 4\) thì \(y = {\log _2}4 = 2\)

b) Biểu thức \(y = {\log _2}x\) có nghĩa khi x > 0.

Nu Mùa
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2023 lúc 12:35

Bài 1:

Hàm số y=(m-3)x+4 đồng biến trên R khi m-3>0

=>m>3

Hàm số y=(m-3)x+4 nghịch biến trên R khi m-3<0

=>m<3

Bài 4:

a: Vì \(a=3-\sqrt{2}>0\)

nên hàm số \(y=\left(3-\sqrt{2}\right)x+1\) đồng biến trên R

b: Khi x=0 thì \(y=0\left(3-\sqrt{2}\right)+1=1\)

Khi x=1 thì \(y=\left(3-\sqrt{2}\right)\cdot1+1=3-\sqrt{2}+1=4-\sqrt{2}\)

Khi \(x=\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\cdot\sqrt{2}+1=3\sqrt{2}-2+1=3\sqrt{2}-1\)

Khi \(x=3+\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)-1\)

=9-4-1

=9-5

=4

Khi \(x=3-\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)^2-1\)

\(=11-6\sqrt{2}-1=10-6\sqrt{2}\)

tuấn tuấn
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 7:00

a: Để hai đường thẳng song song thì m-1=3-m

=>2m=4

hay m=2

Nguyễn Hoàng Minh
22 tháng 12 2021 lúc 7:03

\(\text{//}\Leftrightarrow m-1=3-m\Leftrightarrow m=2\\ \cap\Leftrightarrow m-1\ne3-m\Leftrightarrow m\ne2\)

Trúc Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2021 lúc 22:24

b)

Để hàm số \(y=\left(1-k^2\right)x-1\) là hàm số bậc nhất thì \(1-k^2\ne0\)

\(\Leftrightarrow k^2\ne1\)

hay \(k\notin\left\{1;-1\right\}\)

Để hàm số \(y=\left(1-k^2\right)x-1\) nghịch biến trên R thì \(1-k^2< 0\)

\(\Leftrightarrow k^2>1\)

\(\Leftrightarrow\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\)

Vậy: Khi \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\) thì hàm số \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\) nghịch biến trên R

Anh Nguyen
Xem chi tiết
Trên con đường thành côn...
11 tháng 8 2021 lúc 16:31

undefined

Trần Thị Diệu
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2023 lúc 19:42

a: Để hàm số đồng biến trên R thì m-3>0

=>m>3

Để hàm số nghịch biến trên R thì m-3<0

=>m<3

b: Thay x=1 và y=2 vào y=(m-3)x, ta được:

\(1\left(m-3\right)=2\)

=>m-3=2

=>m=5

c: Thay x=1 và y=2 vào y=(m-3)x, ta được:

m-3=2

=>m=5

d: Khi m=5 thì y=(5-3)x=2x

loading...

MiMi VN
Xem chi tiết