Cho 2 số thực x,y thỏa phương trình x + 3 + 1 + 2 y i = 2 1 + i + 3 yi − x . Khi đó x 2 − xy + y 2 có giá trị là
A. 3 4
B. 9 4
C. 1
D. 1 4
Cho 2 số thực x, y thỏa phương trình x + 3 + 1 + 2 y i = 2 1 + i + 3 y i - x . Khi đó x 2 - x y + y 2 có giá trị là
A. 0
B. 1
C. 3 4
D. 2
Cho x;y là các số thực thỏa mãn hệ phương trình :\(\hept{\begin{cases}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{cases}}\)
TÍCH xy có gtri là :
Lấy trên cộng dưới ta được
\(x^2+\frac{1}{y^2}+2\frac{x}{y}+x+\frac{1}{y}=6\)
\(\Leftrightarrow\left(x+\frac{1}{y}\right)^2+x+\frac{1}{y}-6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{y}=2\\x+\frac{1}{y}=-3\end{cases}}\)
Giờ chỉ việc thế ngược lại là ra nhé
1. Giải phương trình sau:
\(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
2. Cho các số thực x,y thỏa mã điều kiện:
\(\sqrt{x^2+11}+\sqrt{x^2-2018}+x^2=\sqrt{y^2+11}+\sqrt{y^2-2018}+y^2\)
Tính giá trị biểu thức: \(M=x^{11}-y^{2018}\)
3. Cho tam giác ABC vuông tại A trên cạnh BC lấy điểm D bất kỳ. Gọi E và F lần lượt là hình chiếu của D trên cạnh AB và AC.
a) CM: DB.DC=EA.EB+FA.FC
b) Trên cạnh BC lấy điểm M sao cho ^BAD=^CAM
CMR: \(\dfrac{DB}{DC}.\dfrac{MB}{MC}=\dfrac{AB^2}{AC^2}\)
1.
đk: \(x\ge2\)
Đặt y = \(\sqrt{x+2}\) ta biến pt về dạng pt thuần nhất bậc 3 đối vs x và y:
ta có : \(x^3-3x^2+2y^3-6x=0\)
\(\Leftrightarrow x^3-3xy^2+2y^3=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)
ta sẽ có nghiệm : \(x=2;x=2-2\sqrt{3}\)
\(1.đk:\left(x+2\right)^3\ge0\Leftrightarrow x\ge-2\)
\(pt\Leftrightarrow x^3-3x\left(x+2\right)+2\sqrt{\left(x+2\right)^3}=0\)
\(\Leftrightarrow x^3-x\left(x+2\right)+2\sqrt{\left(x+3\right)^2}-2x\left(x+2\right)=0\)
\(\Leftrightarrow x\left[x^2-\left(x+2\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)
\(\Leftrightarrow x\left[\left(x-\sqrt{x+2}\right)\left(x+\sqrt{x+2}\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+2}-x\right)\left[-x\left(\sqrt{x+2}+x\right)+2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(\sqrt{x+2}-x\right)^2\left(2\sqrt{x+2}+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=x\left(2\right)\\2\sqrt{x+2}=-x\left(3\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=x+2\end{matrix}\right.\)\(\Leftrightarrow x=2\left(tm\right)\)
\(\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}-x\ge0\Leftrightarrow x\le0\\x^2=4\left(x+2\right)\end{matrix}\right.\)\(\Leftrightarrow x=2-2\sqrt{3}\left(tm\right)\)
\(2.đk:x^2;y^2\ge2018\Leftrightarrow\left[{}\begin{matrix}x;y\le-\sqrt{2018}\\x;y\ge\sqrt{2018}\end{matrix}\right.\)
\(pt\Leftrightarrow\sqrt{x^2+11}-\sqrt{y^2+11}+\sqrt{x^2-2018}-\sqrt{y^2-2018}+x^2-y^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)+\dfrac{x^2+11-y^2-11}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\dfrac{x^2-2018-y^2+2018}{\sqrt{x^2-2018}+\sqrt{y^2-2018}}=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left[1+\dfrac{1}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\dfrac{1}{\sqrt{x^2-2018}+\sqrt{y^2+2018}}>0\right]=0\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(x=y\Rightarrow M=x^{11}-x^{2018}\)
\(x=-y\Rightarrow M=-y^{11}-y^{2018}=:vvv\) (đến đây chịu)
Cho x;y là các số thực thỏa mãn hệ phương trình
\(\int^{x^2+\frac{1}{y^2}+\frac{x}{y}=3}_{x+\frac{1}{y}+\frac{x}{y}=3}\)
Tích xy có giá trị là .....
ấn vào đây
Cho x;y là các số thực thỏa mãn hệ phương trình
$\int^{x^2+\frac{1}{y^2}+\frac{x}{y}=3}_{x+\frac{1}{y}+\frac{x}{y}=3}$∫x2+1y2 +xy =3x+1y +xy =3
Tích xy có giá trị là .....
Bài 1:Cho hệ
mx+y=3 (1)
9x+my=2m+3 (2)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: 3x+2y=9
Bài 2:Cho hệ
mx+y= m^2
x+my=1 (m là tham số)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0
tìm các số thực x và y thỏa hệ phương trình: 3x+2y=2,x3+y2=12
3x+2y = 2
=> y= \(\frac{2-3x}{2}\) thay vào x^3 + y^2 = 12 ta có :
\(x^3+\left(\frac{2-3x}{2}\right)^2=12\)
<=> \(4x^3+4-12x+9x^2=48\)
<=> \(4x^3+9x^2-12x-44=0\)
<=> \(\left(x-2\right)\left(4x^2+17x+22\right)=0\)
<=> x = 2
=> y = -2
Vậy ( 2 ; -2 ) là nghiệm của hpt
1, Giải phương trình √(x^2-3x+2) +√(x+3) = √(x-2) + √(x^2+2x-3)
2, Các số thực x,a,b,c thay đổi , thỏa mãn hệ:
x+a+b+c=7
x^2 + a^2 + b^2 + c^2 = 13
Tìm GTLN và GTNN của x
3, Tìm x,y thỏa mãn 5x - 2√x . (2+y) + y^2 +1 =0
1, Cho a,b, c là các số thực dương thỏa mãn a + b + c = 5 . Tìm giá trị nhỏ nhất của biểu thức P=a/(ab+5c) + b/(bc+5a)+ c/(ca+5b )
2, giải phương trình : 5/x^2 + 2x/√(x^2+5) =1
3,Cho x,y, z là các số thực dương thỏa mãn x + y + z = 1. CMr : (1-x^2)/(x+yz)+(1-y^2)/(y+xz)+(1-z^2)/(z+xy) ≥6
a) Giải phương trình :2x/x2-x+1 - x/x2+x+1 = 5/3
b) Cho x,y là các số thực dương thỏa mãn x + y >= 7/2 . Tìm giá trị nhỏ nhất của biểu thức :
P = 13x/3 + 10y/3 +1/2x +9/y Giúp mình đi mình tích cho :D