Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 4 2018 lúc 9:11

Pé Chi
Xem chi tiết
alibaba nguyễn
21 tháng 3 2017 lúc 20:55

Lấy trên cộng dưới ta được

\(x^2+\frac{1}{y^2}+2\frac{x}{y}+x+\frac{1}{y}=6\)

\(\Leftrightarrow\left(x+\frac{1}{y}\right)^2+x+\frac{1}{y}-6=0\)

 \(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{y}=2\\x+\frac{1}{y}=-3\end{cases}}\)

Giờ chỉ việc thế ngược lại là ra nhé

Pé Chi
22 tháng 3 2017 lúc 14:46

ths nhá!!!

Bữa nx tốt lạ

Minh Hiếu
Xem chi tiết
Đỗ Tuệ Lâm
22 tháng 2 2022 lúc 18:29

1.

đk: \(x\ge2\)

Đặt y = \(\sqrt{x+2}\) ta biến pt về dạng pt thuần nhất bậc 3 đối vs x và y:

ta có : \(x^3-3x^2+2y^3-6x=0\)

\(\Leftrightarrow x^3-3xy^2+2y^3=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)

ta sẽ có nghiệm : \(x=2;x=2-2\sqrt{3}\)

Minh Hiếu đã xóa
missing you =
22 tháng 2 2022 lúc 19:56

\(1.đk:\left(x+2\right)^3\ge0\Leftrightarrow x\ge-2\)

\(pt\Leftrightarrow x^3-3x\left(x+2\right)+2\sqrt{\left(x+2\right)^3}=0\)

\(\Leftrightarrow x^3-x\left(x+2\right)+2\sqrt{\left(x+3\right)^2}-2x\left(x+2\right)=0\)

\(\Leftrightarrow x\left[x^2-\left(x+2\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)

\(\Leftrightarrow x\left[\left(x-\sqrt{x+2}\right)\left(x+\sqrt{x+2}\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+2}-x\right)\left[-x\left(\sqrt{x+2}+x\right)+2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(\sqrt{x+2}-x\right)^2\left(2\sqrt{x+2}+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=x\left(2\right)\\2\sqrt{x+2}=-x\left(3\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=x+2\end{matrix}\right.\)\(\Leftrightarrow x=2\left(tm\right)\)

\(\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}-x\ge0\Leftrightarrow x\le0\\x^2=4\left(x+2\right)\end{matrix}\right.\)\(\Leftrightarrow x=2-2\sqrt{3}\left(tm\right)\)

missing you =
22 tháng 2 2022 lúc 20:10

\(2.đk:x^2;y^2\ge2018\Leftrightarrow\left[{}\begin{matrix}x;y\le-\sqrt{2018}\\x;y\ge\sqrt{2018}\end{matrix}\right.\)

\(pt\Leftrightarrow\sqrt{x^2+11}-\sqrt{y^2+11}+\sqrt{x^2-2018}-\sqrt{y^2-2018}+x^2-y^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)+\dfrac{x^2+11-y^2-11}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\dfrac{x^2-2018-y^2+2018}{\sqrt{x^2-2018}+\sqrt{y^2-2018}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left[1+\dfrac{1}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\dfrac{1}{\sqrt{x^2-2018}+\sqrt{y^2+2018}}>0\right]=0\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(x=y\Rightarrow M=x^{11}-x^{2018}\)

\(x=-y\Rightarrow M=-y^{11}-y^{2018}=:vvv\) (đến đây chịu)

Thái Dương Lê Văn
Xem chi tiết
nguyễn thị thương
1 tháng 3 2016 lúc 12:37

h xy la 1 

Thắng Nguyễn
1 tháng 3 2016 lúc 18:31

bai nay minh lam roi ma

Thắng Nguyễn
1 tháng 3 2016 lúc 18:32

ấn vào đây

Cho x;y là các số thực thỏa mãn hệ phương trình
 $\int^{x^2+\frac{1}{y^2}+\frac{x}{y}=3}_{x+\frac{1}{y}+\frac{x}{y}=3}$x2+1y2 +xy =3x+1y +xy =3

 
Tích xy có giá trị là .....

Neymar JR
Xem chi tiết
Tung
Xem chi tiết
Trần Đức Thắng
16 tháng 10 2015 lúc 21:34

3x+2y = 2 

=> y= \(\frac{2-3x}{2}\) thay vào x^3 + y^2 = 12 ta có : 

\(x^3+\left(\frac{2-3x}{2}\right)^2=12\)

<=> \(4x^3+4-12x+9x^2=48\)

<=> \(4x^3+9x^2-12x-44=0\)

<=> \(\left(x-2\right)\left(4x^2+17x+22\right)=0\)

<=> x = 2  

=> y = -2 

Vậy ( 2 ; -2 ) là nghiệm của hpt 

 

Lind119
Xem chi tiết
Nguyễn Hải Quân
Xem chi tiết
Xem chi tiết