Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thành Trương
Xem chi tiết
Phùng Khánh Linh
9 tháng 6 2018 lúc 11:43

Bài 6 . Áp dụng BĐT Cauchy , ta có :

a2 + b2 ≥ 2ab ( a > 0 ; b > 0)

⇔ ( a + b)2 ≥ 4ab

\(\dfrac{\left(a+b\right)^2}{4}\)≥ ab

\(\dfrac{a+b}{4}\)\(\dfrac{ab}{a+b}\) ( 1 )

CMTT , ta cũng được : \(\dfrac{b+c}{4}\)\(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\)\(\dfrac{ac}{a+c}\)( 3)

Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :

\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\)\(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)

\(\dfrac{a+b+c}{2}\)\(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)

Phùng Khánh Linh
9 tháng 6 2018 lúc 13:13

Bài 4.

Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :

\(1+\dfrac{a}{b}\)\(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)

\(1+\dfrac{b}{c}\)\(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)

\(1+\dfrac{c}{a}\)\(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)

Nhân từng vế của ( 1 ; 2 ; 3) , ta được :

\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)\(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)

Thành Trương
8 tháng 6 2018 lúc 12:20
Thầy Tùng Dương
Xem chi tiết
Hoàng Tiến Đạt
24 tháng 3 2022 lúc 14:28

mình không biết

Khách vãng lai đã xóa
Nguyễn Hữu Nam Dương
24 tháng 3 2022 lúc 20:24

mik cg ko bik nha a hihi

Khách vãng lai đã xóa
Hoàng Tiến Đạt
25 tháng 3 2022 lúc 7:19

mình không biết mình lớp 3

Khách vãng lai đã xóa
Vi Yến
Xem chi tiết
Nguyễn Vũ Hoàng Lân
Xem chi tiết
Thu Trang Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2022 lúc 9:34

a: Xét ΔAMB và ΔAMC có

AB=AC

AM chung

MB=MC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nen AM là đường cao

=>a//BC

Nghịch Dư Thủy
Xem chi tiết
Nhã Doanh
29 tháng 4 2018 lúc 16:28

Bài 1:

\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\) với a,b,c > 0

Áp dụng BĐT Chauchy cho 2 số không âm, ta có:

\(\dfrac{bc}{a}+\dfrac{ac}{b}=c\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge c\sqrt{\dfrac{b}{a}.\dfrac{a}{b}}=2c\)

\(\dfrac{ac}{b}+\dfrac{ab}{c}=a\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\ge a\sqrt{\dfrac{c}{b}.\dfrac{b}{c}}=2a\)

\(\dfrac{ab}{c}+\dfrac{bc}{a}=b\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge b\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2b\)

Cộng vế theo vế ta được:

\(2\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)

Trần Thị Kiều Hoanh
Xem chi tiết
Lê Thị Hồng Vân
15 tháng 2 2020 lúc 9:15

cho đường tròn tâm O đường kính AB và tiếp tuyến của BC trên tia Bx lấy điểm M ,AM cắt đường tròn tại S là trung điểm của AS .

a)Chứng minh:4 điểm O,I,M,B

a)Chứng minh : OI×MA=OA×MB

Chỗ in đậm là sao bạn, bạn ghi rõ lại giúp mình ?

Khách vãng lai đã xóa
Lê Khánh Hà
Xem chi tiết
Bí mật của tạo hóa...
2 tháng 3 2019 lúc 20:55

A B C M D E K F I

a) Gọi tia phân giác của ∠BAC cắt DE tại K

Vì AK ⊥ DE ( gt )

=> △ ADK vuông tại K và △ AEK vuông tại K

Xét tam giác vuông ADK và tam giác vuông AEK có:

AK chung

∠ A1 = ∠ A2 ( AK là tia phân giác của ∠ BAC )

=> △ ADK = △ AEK (g.c.g )

=> AD = AE ( 2 cạnh tương ứng )

=> △ ADE cân tại A

Vì BF // AC ( gt )

=> ∠ BFD = ∠AEF ( 2 góc đồng vị ) ( 1 )

Ta có ∠ D = ∠AEF ( △ ADE cân tại A ) ( 2 )

Từ (1) và (2) => ∠ BFD = ∠D

=> △ BDF cân tại B

b) Vì BF // AC ( gt )

=> ∠ MBF = ∠ ECM ( 2 góc so le trong )

Xét tam giác BMF và tam giác EMC có:

∠MBF = ∠ECM ( cmt )

MB = MC ( M là t/ đ BC )

∠ BMF = ∠ EMC ( 2 góc đối đỉnh )

=> △ BMF = △ EMC ( g.c.g )

=> MF = ME ( 2 cạnh tương ứng )

Mà M nằm giữa 2 điểm F và E

=> M là t/đ của EF.

c) Trên tia CA lấy I sao cho IE = IC

Mà CE = BD ( △ BMF = △ EMC )

=> CE = EI = BD

=> IC = EI = BD + BD = 2BD

AC - AI = IC = 2BD

AB = AD - BD

AI = AE - IC

Mà AD = AE ( △ ADE cân tại A )

Và BD = IE ( cmt )

=> AB = AI

Mà AC - AI = AB

=> AC - AB = 2BD.

Chúc bn học tốt nha ! ❤❤

Lê Khánh Hà
6 tháng 5 2016 lúc 16:54

 ai rảnh toán thì giúp mình nha . Đây là đề của Sở GDĐT tỉnh Nam Định thi toán 7 cuối năm

Phạm Văn Kham
Xem chi tiết
︎ ︎︎ ︎=︎︎ ︎︎ ︎
29 tháng 1 2020 lúc 17:47

Tham khảo: Nhấn vào đây (câu 1 a,b ấy)

Khách vãng lai đã xóa