Tìm x, biết:
a) x 2 − 2 5 = 1 10
b) 15 x − 1 3 = 28 51
Tìm x, biết:
a)\(x + \left( { - \frac{1}{5}} \right) = \frac{{ - 4}}{{15}}\);
b)\(3,7 - x = \frac{7}{{10}};\)
c)\(x.\frac{3}{2} = 2,4\);
d)\(3,2:x = - \frac{6}{{11}}\).
a)
\(\begin{array}{l}x + \left( { - \frac{1}{5}} \right) = \frac{{ - 4}}{{15}}\\x = \frac{{ - 4}}{{15}} + \frac{1}{5}\\x = \frac{{ - 4}}{{15}} + \frac{3}{{15}}\\x = \frac{{ - 1}}{{15}}\end{array}\)
Vậy \(x = \frac{{ - 1}}{{15}}\).
b)
\(\begin{array}{l}3,7 - x = \frac{7}{{10}}\\x = 3,7 - \frac{7}{{10}}\\x = \frac{{37}}{{10}} - \frac{7}{{10}}\\x=\frac{30}{10}\\x = 3\end{array}\)
Vậy \(x = 3\).
c)
\(\begin{array}{l}x.\frac{3}{2} = 2,4\\x.\frac{3}{2} = \frac{{12}}{5}\\x = \frac{{12}}{5}:\frac{3}{2}\\x = \frac{{12}}{5}.\frac{2}{3}\\x = \frac{8}{5}\end{array}\)
Vậy \(x = \frac{8}{5}\)
d)
\(\begin{array}{l}3,2:x = - \frac{6}{{11}}\\\frac{{16}}{5}:x = - \frac{6}{{11}}\\x = \frac{{16}}{5}:\left( { - \frac{6}{{11}}} \right)\\x = \frac{{16}}{5}.\frac{{ - 11}}{6}\\x = \frac{{ - 88}}{{15}}\end{array}\)
Vậy \(x = \frac{{ - 88}}{{15}}\).
Tìm x, biết:
a) 16x2-(4x-5)2=15 b) (2x+1)(1-2x)+(1-2x)2=18
c) (x-5)2-x(x-4)=9 d) (x-5)2+(x-4)(1-x)=0
a) <=> (4x - 4x + 5)(4x + 4x - 5) = 15 <=> 40x = 15 <=> x = 3/8
a) <=> (4x - 4x + 5)(4x + 4x - 5) = 15 <=> 5(8x-5) = 15
<=> 40x = 40 <=> x = 1
Cái này mới chuẩn
b) (2x+1)(1-2x)+(1-2x)2=18 <=> 1 - 4x2 + 4x2 - 4x + 1 = 18
<=> -4x = 16 <=> x = -4
Bài 1. Thực hiện phép tính:
a) [(10 – 22 – 32 : 2]. 3 – 48 : 2
b) 4 (-5) + 49 : (-7) + 19
Bài 2. Tìm x, biết:
a) (x – 14) : 5 = 415 : 413.
b) 7x – 15x = 15 – 175
Mik sẽ tick
Bài 1:
a)-54
b)-8
Bài 2:
a)(x-14):5=415:413
⇔(x-14):5=42
⇔(x-14):5=16
⇔x-14=80
⇔x=94
b)7x-15x=15-175
⇔-8x=-160
⇔x=20
Tìm x biết:a) 10/x = -15/9; b) x/9 = -11/5 : 0,6; c) -7/8 - 2x = -3/4; d) (x-1/2):1/3+5/7=9và5/7; e)1/15.x+4/5.x=5và1/5; f) -1/3<x/6<1/2(x thuộc Z); h) 3/5+2/5:x=-1/4;i) 4 và 3/4x - 3 và 1/2=5/4; k)9/4.(1/3x-1/2)=4và1/2
Bài 10: Tìm các số nguyên \(x\) biết:
a) \(2x-3\) là bội của \(x+1\)
b) \(x-2\) là ước của \(3x-2\)
Bài 14: Tìm số tự nhiên \(n\) sao cho:
a) \(4n-5\) ⋮ \(2n-1\)
b) \(n^2+3n+1\) ⋮ \(n+1\)
Bài 16: Tìm cặp số tự nhiên \(x\),\(y\) biết:
a) \(\left(x+5\right)\left(y-3\right)=15\)
b) \(\left(2x-1\right)\left(y+2\right)=24\)
c) \(xy+2x+3y=0\)
d) \(xy+x+y=30\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
Bài 16:
a: \(\left(x+5\right)\left(y-3\right)=15\)
=>\(\left(x+5\right)\left(y-3\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>\(\left(x+5;y-3\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-4;18\right);\left(10;4\right);\left(-6;-12\right);\left(-20;2\right);\left(-2;8\right);\left(0;6\right);\left(-8;-2\right);\left(-10;0\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(10;4\right);\left(0;6\right)\right\}\)
b: x là số tự nhiên
=>2x-1 lẻ và 2x-1>=-1
\(\left(2x-1\right)\left(y+2\right)=24\)
mà 2x-1>=-1 và 2x-1 lẻ
nên \(\left(2x-1\right)\cdot\left(y+2\right)=\left(-1\right)\cdot\left(-24\right)=1\cdot24=3\cdot8\)
=>\(\left(2x-1;y+2\right)\in\left\{\left(-1;-24\right);\left(1;24\right);\left(3;8\right)\right\}\)
=>\(\left(2x;y\right)\in\left\{\left(0;-26\right);\left(2;22\right);\left(4;6\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-26\right);\left(1;11\right);\left(2;6\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(1;11\right);\left(2;6\right)\right\}\)
c:
x,y là các số tự nhiên
=>x+3>=3 và y+2>=2
xy+2x+3y=0
=>\(xy+2x+3y+6=6\)
=>\(x\left(y+2\right)+3\left(y+2\right)=6\)
=>\(\left(x+3\right)\left(y+2\right)=6\)
mà x+3>=3 và y+2>=2
nên \(\left(x+3\right)\cdot\left(y+2\right)=3\cdot2\)
=>x=0 và y=0
d: xy+x+y=30
=>\(xy+x+y+1=31\)
=>\(x\left(y+1\right)+\left(y+1\right)=31\)
=>\(\left(x+1\right)\left(y+1\right)=31\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(y+1\right)=1\cdot31=31\cdot1=\left(-1\right)\cdot\left(-31\right)=\left(-31\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y+1\right)\in\left\{\left(1;31\right);\left(31;1\right);\left(-1;-31\right);\left(-31;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right);\left(-2;-32\right);\left(-32;-2\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right)\right\}\)
Bài 12: Tính :
a) A = 1 + (-3) + 5 + ( - 7) +….+ 17 + ( -19);
b) B = (- 2) + 4 + (-6) + 8 + …+ ( - 18) + 20;
c) C = 1 + (-2) + 3 + (-4) + ….+ 1999 + ( - 2000) + 2001;
Bài 13: Tìm số nguyên x, biết:
a) –x + 20 = -(-15) –(+8) + 13
b) –(-10) + x = -13 + (-9) + (-6)
Bài 13:
a: =>20-x=15-8+13=20
hay x=0
Bài 1: Tìm BCNN của:
a) 10 và 12 b) 24 và 10 c) 4; 14 và 26 d) 6, 8 và 10.
Bài 2: Tìm các số tự nhiên x, biết:
a) x ⋮ 10; x ⋮ 15 và x < 100.
b) x ⋮ 14; x ⋮ 15; x ⋮ 20 và 400 <x ≤ 1200.
Bài 1:
a: BCNN(10;12)=60
b: BCNN(24;10)=120
c: BCNN(4;14;26)=364
d: BCNN(6;8;10)=120
Bài 3:cho
A=[0,8.7+(0,8)2].(1,25.7.4/5.1,25)+41,64
B=(1,09-0,29).4/5 phần (18,9-16,65)8/9
hỏi A gấp mấy lần B?
bài 4:tìm x thuộc Q biết:
a,-2/15-x-(-3/10)
b,3/4+1/4:x-2/5
b,2x.(x-1/4)-0
d,3/4.x-1/2-3/7
ai giúp mik vs
Bài 4:
b: Ta có: \(2x\left(x-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)
Tìm X,biết:
a) \(X+X+\dfrac{1}{2}x\dfrac{2}{5}+X+\dfrac{8}{10}=121\) b) \(\dfrac{12+x}{42}=\dfrac{5}{6}\)
`#3107.101107`
a)
\(x+x+\dfrac{1}{2}\times\dfrac{2}{5}+x+\dfrac{8}{10}=121\\3x+\dfrac{1}{5}+\dfrac{4}{5}=121\\ 3x+1=121\\ 3x=121-1\\ 3x=120\\ x=40 \)
Vậy, `x = 40`
b)
\(\dfrac{12+x}{42}=\dfrac{5}{6}\\ \dfrac{12+x}{42}=\dfrac{35}{42}\\ \dfrac{12+x}{42}-\dfrac{35}{42}=0\\ \dfrac{12+x-35}{42}=0\\ \dfrac{x-\left(35-12\right)}{42}=0\\ \dfrac{x-23}{42}=0\\ x-23=0\\ x=23\)
Vậy,` x = 23.`
a: \(x+x+\dfrac{1}{2}\cdot\dfrac{2}{5}+x+\dfrac{8}{10}=121\)
=>\(3x+\dfrac{1}{5}+\dfrac{4}{5}=121\)
=>3x+1=121
=>3x=120
=>x=40
b: \(\dfrac{x+12}{42}=\dfrac{5}{6}\)
=>\(x+12=42\cdot\dfrac{5}{6}=35\)
=>x=35-12=23
tìm x,y biết:
a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)( do \(x^2\ge0,\left(y-\dfrac{1}{10}\right)^4\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\)( do \(\left(\dfrac{1}{2}x-5\right)^{20}\ge0,\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)
\(a,\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\\ b,\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\end{matrix}\right.\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)
Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)
a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
Mà \(x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x;y\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(0;\dfrac{1}{10}\right)\)
b) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\forall x;y\)
\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}=0\\\left(y^2-\dfrac{1}{4}\right)^{10}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(10;\dfrac{1}{2}\right);\left(10;-\dfrac{1}{2}\right)\right\}\)