Quy đồng mẫu thức các phân thức sau 4 x x 2 + 4 x + 4 ; 3 2 x + 4
Quy đồng mẫu các phân thức sau:
\(\frac{x^2-4}{x^2+2x}\) và \(\frac{x}{x-2}\)
\(\dfrac{x^2-4}{x^2+2x}=\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x-2}{x}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}\)
\(\dfrac{x}{x-2}=\dfrac{x^2}{x\left(x-2\right)}\)
Quy đồng mẫu thức các phân thức sau x + 1 x 4 - 2 x 2 ; x x 4 - 4 x 2 + 4
a) Quy đồng mẫu thức các phân thức: 1x+2;x+1x2−4x−4 và 52−x
Check lại lỗi CT em
quy đồng mẫu thức phân thức 4/x^2-3x+2 và 1/x^2-x
\(\dfrac{4}{x^2-3x+2}\) và \(\dfrac{1}{x^2-x}\)
\(\dfrac{4}{x^2-3x+2}=\dfrac{4}{\left(x-1\right)\left(x-2\right)}\)
\(\dfrac{1}{x^2-x}=\dfrac{1}{x\left(x-1\right)}\)
`MSC: x(x-1)(x-2)`
\(\dfrac{4}{\left(x-1\right)\left(x-2\right)}=\dfrac{4\cdot x}{x\left(x-1\right)\left(x-2\right)}=\dfrac{4x}{x\left(x-1\right)\left(x-2\right)}\)
\(\dfrac{1}{x\left(x-1\right)}=\dfrac{1\cdot\left(x-2\right)}{x\left(x-1\right)\left(x-2\right)}=\dfrac{x-2}{x\left(x-1\right)\left(x-2\right)}\)
Quy đồng mẫu thức các phân thức sau: 1 6 x 3 y 2 ; x + 1 9 x 2 y 4 ; x - 1 4 x y 3
Quy đồng mẫu thức các phân thức sau (có thể áp dụng quy tắc đổi dấu với một phân thức để tìm mẫu thức chung thuận tiện hơn)
a) \(\dfrac{4x^2-3x+5}{x^3-1},\dfrac{1-2x}{x^2+x+1},-2\)
b) \(\dfrac{10}{x+2},\dfrac{5}{2x-4},\dfrac{1}{6-3x}\)
a) Tìm MTC: x3 – 1 = (x – 1)(x2 + x + 1)
Nên MTC = (x – 1)(x2 + x + 1)
Nhân tử phụ:
(x3 – 1) : (x3 – 1) = 1
(x – 1)(x2 + x + 1) : (x2 + x + 1) = x – 1
(x – 1)(x2+ x + 1) : 1 = (x – 1)(x2 + x + 1)
Qui đồng:
b) Tìm MTC: x + 2
2x – 4 = 2(x – 2)
6 – 3x = 3(2 – x)
MTC = 6(x – 2)(x + 2)
Nhân tử phụ:
6(x – 2)(x + 2) : (x + 2) = 6(x – 2)
6(x – 2)(x + 2) : 2(x – 2) = 3(x + 2)
6(x – 2)(x + 2) : -3(x – 2) = -2(x + 2)
Qui đồng:
click mh nhaQuy đồng mẫu thức các phân thức sau x x 3 - 1 , x + 1 x 2 - x , x - 1 x 2 + x + 1
Quy đồng mẫu thức các phân thức sau x + 1 x - x 2 , x + 2 2 - 4 x + 2 x 2
quy đồng mẫu thức của các phân thức sau
\(x^2+1,\frac{x^4}{x^{2-1}}\)
\(\frac{x^3}{x^3-3x^2y+3xy^2-y^3},\frac{x}{y^2-xy}\)
Quy đồng mẫu thức các phân thức sau: a) 1/x^2y và 3/xy b) x/(x^2+2xy+y^2) và 2x/(x^2+xy)
a: 1/x^2y=1/x^2y
3/xy=3x/x^2y
b: \(\dfrac{x}{x^2+2xy+y^2}=\dfrac{x}{\left(x+y\right)^2}\)
\(\dfrac{2x}{x^2+xy}=\dfrac{2}{x+y}=\dfrac{2x+2y}{\left(x+y\right)^2}\)