Viết biểu thức ( x + 1 ) ( x 2 - x + 1 ) dưới dạng tổng hai lập phương
Viết biểu thức ( x + 1 ) x 2 - x + 1 dưới dạng tổng hai lập phương
Ta có: ( x + 1 ) ( x 2 - x + 1 ) = x 3 + 1 3 = x 3 + 1 .
Viết biểu thức x^3 + 3x^2 + 3x + 1 dưới dạng lập phương của một tổng.
Ta có x 3 + 3 x 2 + 3 x + 1 = x 3 + 3 x 2 . 1 + 3 x . 1 2 + 1 3 = ( x + 1 ) 3 .
Viết biểu thức sau dưới dạng lập phương của 1 tổng hoặc hiệu:
a) 4x2 + x4 + 4
b) (-x + 2y)2 + 2(2y - x) + 1
c) (2a - 4b)2 + 4a - 8b + 1
a) \(x^4+4x^2+4=\left(x^2+2\right)^2\)
b) \(\left(2y-x\right)^2+2\left(2y-x\right)+1=\left(2y-x+1\right)^2\)
c) \(\left(2a-4b\right)^2+4a-8b+1=\left(2a-4b\right)^2+2\cdot\left(2a-4b\right)\cdot1+1^2=\left(2a-4b+1\right)^2\)
Hãy viết biểu thức sau dưới dạng lập phương của một tổng :
3x^2+3x+1+x^3
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(3x^2+3x+1+x^3\)
\(=x^3+3x^2+3x+1\)
\(=\left(x+1\right)^3\)
Bài 1:
Cho ba số thực x,y,z khác 0 thỏa mãn (x+y+z)^2= x^2+y^2+z^2. Chứng minh rằng 1/x+1/y+1/z =0
Bài 2: Viết biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu
-8x^6 - 12^4 - 6x^2- y^3
Bài 3:Viết biểu thức sau dưới dạng tích
1/9-(2x-y)^2
giúp mình với ạ, mình đang cần gấp ạ. Cảm ơn ạ!
2:
-8x^6-12x^4y-6x^2y^2-y^3
=-(8x^6+12x^4y+6x^2y^2+y^3)
=-(2x^2+y)^3
3:
=(1/3)^2-(2x-y)^2
=(1/3-2x+y)(1/3+2x-y)
chứng minh rằng biểu thức sau viết dưới dạng tổng các bình phương của hai biểu thức
\(x^2+2\left(x+1\right)^2+3\left(x-2\right)^2+4\left(x+3\right)^2\)
\(x^2+2\left(x+1\right)^2+3\left(x-2\right)^2+4\left(x+3\right)^2\)
\(=x^2+2\left(x^2+2x+1\right)+3\left(x^2-4x+4\right)+4\left(x^2+6x+9\right)\)
\(=x^2+2x^2+4x+2+3x^2-12x+12+4x^2+24x+36\)
\(=10x^2+16x+50\)
Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc 1 hiệu:
a,-x^3/8+3/4x^2-3/2x+1
b,x^6-3/2x^4y+3/4x^2y^2-1/8y^3
`a,-x^3/8 + 3/(4x^2) - 3/(2x) +1`
`=-(x^3/8 - 3/(4x^2) + 3/(2x) - 1)`
`=-(x/2 - 1)^3`
`b,x^6 - 3/(2x^{4} y) + 3/(4x^{2}y^{2}) - 1/(8y^{3})`
`=(x^3 - 1/(2y))^{3}`
Bài 1. Khai triển các hằng đẳng thức sau:
a) (2x+1)3 b) (x-3)3
c) (-5x-y)3 h) (3y-2x2)3
Bài 2. Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc lập phương của một hiệu.
a) x3+15x2+75x+125
b) 1-15y+75y2+125y3
c) 8x3+4x2y+3/2 xy2+8y3
d) -8x2+36x2-54+27
a) \(\left(2x+1\right)^3\)
\(=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1+1\)
\(=8x^3+12x^2+6x+1\)
b) \(\left(x-3\right)^3\)
\(=x^3-3.x^2.3+3.x.3^2-3^3\)
\(=x^3-9x^2+27x-27\)
Bài 2:
a: \(x^3+15x^2+75x+125=\left(x+5\right)^3\)
b: \(1-15y+75y^2-125y^3=\left(1-5y\right)^3\)
c: \(8x^3+4x^2y+\dfrac{3}{2}xy^2+8y^3=\left(2x+2y\right)^3\)
Viết biểu thức \({x^3} + 9{x^2}y + 27x{y^2} + 27{y^3}\) dưới dạng lập phương của một tổng.
\(\begin{array}{l}{x^3} + 9{x^2}y + 27x{y^2} + 27{y^3}\\ = {x^3} + 3.{x^2}.3y + 3.x.{\left( {3y} \right)^2} + {\left( {3y} \right)^3}\\ = {\left( {x + 3y} \right)^3}\end{array}\)