Rút gọn biểu thức:
a) m + 7 m + 8 . m + 8 m + 9 : m + 9 m + 7 với m ≠ − 9 ; m ≠ − 8 và m ≠ − 7
b) n + 7 n + 8 : n + 8 n + 9 . n + 9 n + 7 với n ≠ − 9 ; n ≠ − 8 và n ≠ − 7
Cho biểu thức:A=(-m+n-p)-(-m-n-p)
a)Rút gọn A
A=-m+n-p-m+n+p A=(-m-m)+(n+n)+(p-p) A=-2m+2n
rút gọn các biểu thức
a.x+8-x-2
b.a-m+7-8+m
rút gọn các biểu thức
a.x+8-x-2
= (x-x) + (8 - 2)
= 0 + 6 = 6
b.a-m+7-8+m
= a - (m-m) + (7-8)
= a -0 - 1 = a-1
a.x+8-x-2
= (x-x) + (8 - 2)
= 0 + 6 = 6
b.a-m+7-8+m
= a - (m-m) + (7-8)
= a -0 - 1 = a-1
Rút gọn biểu thức:
a) \(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}\)
b) \(\dfrac{\sqrt{21+8\sqrt{5}}}{4+\sqrt{5}}.\sqrt{9-4\sqrt{5}}\)
a)\(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}=\sqrt{\dfrac{1}{2}\left(16+8\sqrt{3}\right)}-\sqrt{\dfrac{1}{2}\left(16-8\sqrt{3}\right)}\)
\(=\sqrt{\dfrac{1}{2}\left(2+2\sqrt{3}\right)^2}-\sqrt{\dfrac{1}{2}\left(2-2\sqrt{3}\right)^2}\)\(=\sqrt{\dfrac{1}{2}}\left(2+2\sqrt{3}\right)-\sqrt{\dfrac{1}{2}}\left(2\sqrt{3}-2\right)=2\sqrt{2}\)
b)\(=\dfrac{\sqrt{16+2.4\sqrt{5}+5}}{4+\sqrt{5}}.\sqrt{\left(2-\sqrt{5}\right)^2}\)\(=\dfrac{\sqrt{\left(4+\sqrt{5}\right)^2}}{4+\sqrt{5}}\left|2-\sqrt{5}\right|=\sqrt{5}-2\)
a) Ta có: \(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}\)
\(=\sqrt{6}+\sqrt{2}-\sqrt{6}+\sqrt{2}\)
\(=2\sqrt{2}\)
b) Ta có: \(\dfrac{\sqrt{21+8\sqrt{5}}}{4+\sqrt{5}}\cdot\sqrt{9-4\sqrt{5}}\)
\(=\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)\)
=16-5=11
Rút gọn rồi tính giá trị của biểu thức:A=(2x+3).(5x-1)-5x.(2x-7) với x=0
Giup mik
Ta có: (2x+3)(5x-1) - 5x(2x-7) = (2x+3)(5x-1) - 5x( 2x+3-10)
= (2x+3)(5x-1) - 5x(2x+3) + 50x
= (2x+3) (5x - 1 - 5x) + 50x
= (2x+3) .-1 +50x
Thay x =0 => (2.0+3) . -1 +50.0 = -3
Rút gọn biểu thức:
a)\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}\)
b)\(\sqrt{\left(\sqrt{3}+4\right)\sqrt{19-8\sqrt{3}}+3}\)
\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(4\sqrt{3}+\sqrt{5}\right)^2}\)
\(=2\sqrt{2}-\sqrt{5}-4\sqrt{3}-\sqrt{5}\)
\(=2\sqrt{2}-4\sqrt{3}-2\sqrt{5}\)
\(\sqrt{\left(4+\sqrt{3}\right)\sqrt{19-8\sqrt{3}}+3}=\sqrt{\left(4+\sqrt{3}\right)\sqrt{\left(4-\sqrt{3}\right)^2}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)+3}=\sqrt{4-3+3}=2\)
a) Ta có: \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}\)
\(=2\sqrt{2}-\sqrt{5}-4\sqrt{3}+\sqrt{5}\)
\(=2\sqrt{2}-4\sqrt{3}\)
b) Ta có: \(\sqrt{\left(4+\sqrt{3}\right)\cdot\sqrt{19-8\sqrt{3}+3}}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)+3}\)
=4
Cho biểu thức:A=(3m+4n-5p)-(3m-4n-5p)
a)Rút gọn biểu thức A
b)Tính giá trị của A khi m = 12343,n = -1,p = 56783
\(b)\) Thay \(m=1234^3\)\(;\)\(n=-1\) và \(p=5678^3\) ta được :
\(A=\left[3.1234^3+4.\left(-1\right)-5.5678^3\right]-\left[3.1234^3-4.\left(-1\right)-5.5678^3\right]\)
\(A=3.1234^3-4-5.5678^3-3.1234^3-4+5678^3\)
\(A=\left(3.1234^3-3.1234^3\right)+\left(-4-4\right)+\left(-5.5678^3+5.5678^3\right)\)
\(A=0+\left(-8\right)+0\)
\(A=-8\)
Vậy giá trị của biểu thức \(A=\left(3m+4n-5p\right)-\left(3m-4n-5p\right)\) tại \(m=1234^3\)\(;\)\(n=-1\) và \(p=5678^3\) là \(-8\)
Chúc bạn học tốt ~
\(a)\) \(A=\left(3m+4n-5p\right)-\left(3m-4n-5p\right)\)
\(A=3m+4n-5p-3m+4n+5p\)
\(A=\left(3m-3m\right)+\left(4n+4n\right)+\left(-5p+5p\right)\)
\(A=0+8n+0\)
\(A=8n\)
Vậy \(A=8n\)
Chúc bạn học tốt ~
Rút gọn biểu thức:
a) M=(x-1)3-3x.(x-1)2+3x2.(x-1)+x3
b) D= (x- y)3-3.(x-y)2x+3.(x-y)x2-x3
Giải chi tiết giúp mình nha.Cảm ơn.
Lời giải:
Áp dụng HĐT: $(a-b)^3=a^3-b^3-3ab(a-b)$ cho cả hai bạn.
a.
$M=x^3-1-3x(x-1)-3x(x-1)^2+3x^2(x-1)+x^3$
$=2x^3-1+3x(x-1)[-1-(x-1)+x]$
$=2x^3-1+3x(x-1).0=2x^3-1$
b.
$D=[(x-y)-x]^3=-y^3$
Rút gọn biểu thức:
a) 3\(\sqrt{32}-2\sqrt{2}+\sqrt{50}\)
mai mk thi rùi cầu cho các bạn trai xinh gái đẹp giúp mk với huhu
Rút gọn biểu thức:
A=1 + 1/2 + 1/22 + 1/32 + ..... + 1/22012
a.Chứng tỏ rằng B = 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72 +1/82 < 1
b.Cho S = 3/1.4 + 3/4.7 + 3/7.10 +......+3/40.43 + 3/43.46 hãy chứng tỏ rằng S < 1
Sửa đề: 1/32=1/23
Giải:
A=1+1/2+1/22+1/23+..1/22012
2A=2+1+1/2+1/22+...+1/22011
2A-A=(2+1+1/2+1/22+...+1/22011)-(1+1/2+1/22+1/23+...+1/22012)
A=2-22012
Chúc bạn học tốt!