Cho hệ phương trình x + 1 y = 2 2 x − 3 y = 1 . Biết nghiệm của hệ phương trình là (x; y), tính 5 x y
A. 35 3
B. 21 5
C. 7 3
D. 21 25
cho hệ phương trình x + y = 3k - 2
2x - y = 5 với k là tham số
giải hệ phương trình khi k = 1
tìm k để hệ phương trình có nghiệm ( x ; y) sao cho x^2 - y - 5/ y + 1 = 4
Thay k=1 và HPT ta có:
\(\left\{{}\begin{matrix}x+y=3.1-2\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x+y=1\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+2y=2\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+2y=2\\3y=-3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiệm (x;y) = (2;-1)
b) tìm k để hệ phương trình có nghiệm ( x ; y) sao cho \(x^2-y-\dfrac{5}{y}+1=4\)
\(\left\{{}\begin{matrix}x+y=3k-2\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\2x-\left(3k-2-x\right)=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\2x-3k+2+x=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\3x=3k+3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\x=k+1\end{matrix}\right.\)
Ta có \(\text{ x= k+1 }=>y=2k-3\) (*)
Thay vào biểu thức đã cho ở đề bài ta có :
\(x^2-y-\dfrac{5}{y}+1=4\)
⇔\(\left(k+1\right)^2-2k+3-\dfrac{5}{2k-3}+1=4\)
⇔\(k^2+2k+1-2k+3-\dfrac{5}{2k-3}+1=4\)
Sau một hồi bấm máy tính Casio thì ra k=2
Vậy k=2 thì Thỏa mãn yêu cầu đề bài
Lần sau bạn dùng Latex đánh đề bài cho dễ nhìn nha, mình sợ chép lại đề bài bị sai @@
cho hệ phương trình
\(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y+1\end{matrix}\right.\)
a)giải hệ phương trình khi m=2
b)giải hệ phương trình theo m
c)tìm m để hệ có nghiệm (x;y) là các số dương
d)tìm m để hệ phương trình có nghiệm thỏa mãn x^2+y^2=1
Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.
ĐK: $m\neq 0$
a) Khi $m=2,$ hệ phương trình là:
\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)
b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)
c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:
\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)
d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)
Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$
Cho hệ phương trình
\(\begin{cases} (k - 1)x + y = 3k - 4\\ x + (k - 1)y = k - 1 \end{cases}\)
Tìm k ϵ Z để hệ phương trình có nghiệm (x; y) sao cho x, y ϵ Z
Cho hệ phương trình:
\(\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=15m-25\end{matrix}\right.\) ( m là tham số).
a, Giải hệ phương trình trên khi m = 3.
b, Tìm m để hệ phương trình trên có nghiệm (x0; y0) và x0, y0 là những số dương.
Đặt \(x+\dfrac{1}{x}=a;y+\dfrac{1}{y}=b\left(\left|a\right|\ge2;\left|b\right|\ge2\right)\)
\(\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x^3+\dfrac{1}{x^3}\right)+\left(y^3+\dfrac{1}{y^3}\right)=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3-3\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)^3-3\left(y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3-3\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\a^3+b^3=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\\left(a+b\right)^3-3ab\left(a+b\right)=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\125-15ab=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\ab=9-m\end{matrix}\right.\)
\(\Rightarrow a,b\) là nghiệm của phương trình \(t^2-5t+9-m=0\left(1\right)\)
a, Nếu \(m=3\), phương trình \(\left(1\right)\) trở thành
\(t^2-5t+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y+\dfrac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y^2-3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3\pm\sqrt{5}}{2}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=3\\y+\dfrac{1}{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3\pm\sqrt{5}}{2}\\y=1\end{matrix}\right.\)
Vậy ...
b, \(\left(1\right)\Leftrightarrow t=\dfrac{5\pm\sqrt{4m-11}}{2}\left(m\ge\dfrac{11}{4}\right)\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5\pm\sqrt{4m-11}}{2}\\b=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{5\pm\sqrt{4m-11}}{2}\\y+\dfrac{1}{y}=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-\left(5\pm\sqrt{4m-11}\right)+2=0\left(2\right)\\2y^2-\left(5\mp\sqrt{4m-11}\right)+2=0\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(2\right)\) có nghiệm dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(5\pm\sqrt{4m-11}\right)^2-16\ge0\\\dfrac{5\pm\sqrt{4m-11}}{2}>0\\1>0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Bài tập 1 Cho hệ phương trình (1)
1. Giải hệ phương trình (1) khi m = 3 .
2. Tìm m để hệ phương trình có nghiệm x = và y = .
3. Tìm nghiệm của hệ phương trình (1) theo m.
Cho hệ phương trình: x + my = m + 1 mx + y = 2m,Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x > 2 và y > 1
cho hệ phương trình : x+my=m+1
mx+y=3m-1 ( m là tham số )
a.giải hệ phương trình với m =-2
b. tìm m để hệ phương trình có nghiệm duy nhất(x;y) thỏa mãn x2-y2=4
a: Thay m=-2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-2y=-2+1=-1\\-2x+y=3\cdot\left(-2\right)-1=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-4y=-2\\-2x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\x-2y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=3\\x=2y-1=2\cdot3-1=5\end{matrix}\right.\)
b: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(-m^2+1\right)=3m-1-m^2-m=-m^2+2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(m-1\right)\left(m+1\right)=\left(m-1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=m+1-m\cdot\dfrac{m-1}{m+1}=\left(m+1\right)-\dfrac{m^2-m}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\end{matrix}\right.\)
\(x^2-y^2=4\)
=>\(\dfrac{\left(3m+1\right)^2-\left(m-1\right)^2}{\left(m+1\right)^2}=4\)
=>\(\dfrac{9m^2+6m+1-m^2+2m+1}{\left(m+1\right)^2}=4\)
=>\(8m^2+8m+2=4\left(m+1\right)^2\)
=>\(8m^2+8m+2-4m^2-8m-4=0\)
=>\(4m^2-2=0\)
=>\(m^2=\dfrac{1}{2}\)
=>\(m=\pm\dfrac{1}{\sqrt{2}}\)
cho hệ phương trình:{mx-y=1 và x+my=2
1,giải hệ phương trình theo tham số m
2,gọi nghiệm của hệ phương trình là(x,y). Tìm các giá trị m để x+y=1
3, tìm đẳng thức liên hệ giưa x và y không phụ thuộc vào m
Cho hệ phương trình 2x-y=m-1
2x+y=4m+1
a.giải hệ phương trình với m=2
b.tìm m để hệ phương trình có nghiệm duy nhất(x;y) thỏa mãn 2x2-3y=2
Lời giải:
a. Với $m=2$ thì:
$2x-y=1$
$2x+y=9$
Cộng 2 phép tính với nhau thì:
$2x-y+2x+y=10$
$\Rightarrow 4x=10\Rightarrow x=2,5$
$y=2x-1=2.2,5-1=4$
Vậy hpt có nghiệm $(x;y)=(2,5; 4)$
b.
$2x-y=m-1$
$2x+y=4m+1$
$\Rightarrow (2x-y)+(2x+y)=m-1+4m+1$
$\Leftrightarrow 4x=5m$
$\Leftrightarrow x=\frac{5m}{4}$
$y=2x-(m-1)=\frac{5m}{2}-(m-1)=\frac{3m+2}{2}$
Khi đó:
$2x^2-3y=2$
$\Leftrightarrow \frac{25m^2}{8}-\frac{3(3m+2)}{2}=2$
$\Leftrightarrow 25m^2-36m-40=0$
$\Leftrightarrow m=\frac{18\pm 2\sqrt{331}}{25}$