Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2021 lúc 12:27

a) Ta có: \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\)

\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+30\)

\(=14\sqrt{2x}+30\)

b) Ta có: \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\cdot\sqrt{\dfrac{9x^3}{64}}\)

\(=4\cdot\dfrac{5\sqrt{x}}{2}-\dfrac{8}{3}\cdot\dfrac{3\sqrt{x}}{2}-\dfrac{4}{3x}\cdot\dfrac{3x\sqrt{x}}{8}\)

\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)

\(=\dfrac{11}{2}\sqrt{x}\)

c) Ta có: \(\dfrac{y}{2}+\dfrac{3}{4}\sqrt{9y^2-6y+1}-\dfrac{3}{2}\)

\(=\dfrac{1}{2}y+\dfrac{3}{4}\left(1-3y\right)-\dfrac{3}{2}\)

\(=\dfrac{1}{2}y+\dfrac{3}{4}-\dfrac{9}{4}y-\dfrac{3}{2}\)

\(=-\dfrac{7}{4}y-\dfrac{3}{4}\)

Ngọc Vũ
Xem chi tiết
Lấp La Lấp Lánh
20 tháng 9 2021 lúc 19:07

1) \(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{4-2\sqrt{3}}=\sqrt{3}+1-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}+1-\sqrt{3}+1=2\)

2) \(\dfrac{3}{5}\sqrt{25x-50}-\sqrt{x-2}=6\left(đk:x\ge2\right)\)

\(\Leftrightarrow3\sqrt{x-2}-\sqrt{x-2}=6\)

\(\Leftrightarrow2\sqrt{x-2}=6\)

\(\Leftrightarrow\sqrt{x-2}=3\)

\(\Leftrightarrow x-2=9\Leftrightarrow x=11\left(tm\right)\)

Kim Tuyền
Xem chi tiết
Võ Việt Hoàng
28 tháng 7 2023 lúc 16:05

A) \(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)

\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)

\(\Leftrightarrow5\sqrt{x-1}-\dfrac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\)

\(\Leftrightarrow\dfrac{3}{2}\sqrt{x-1}=6\)

\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\)

\(\Leftrightarrow x=17\)

Vậy, x=17

 

Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 13:42

A: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)

=>5/2*căn x-1-căn x-1=6

=>3/2*căn x-1=6

=>căn x-1=4

=>x-1=16

=>x=17

B:

a: ĐKXĐ: x>=0; x<>1

b: Sửa đề: \(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)

=căn x-1+x-căn x+1

=x

Võ Việt Hoàng
28 tháng 7 2023 lúc 16:23

B) a) \(ĐK:\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b)Sửa đề \(A=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\sqrt{x}-1+x-\sqrt{x}+1=x\)

WHAT
Xem chi tiết
Akai Haruma
28 tháng 12 2023 lúc 14:36

Bài 1:
a. ĐKXĐ: $x\geq \frac{2}{5}$

PT $\Leftrightarrow 5x-2=7^2=49$

$\Leftrightarrow 5x=51$

$\Leftrightarrow x=\frac{51}{5}=10,2$

b. ĐKXĐ: $x\geq 3$

PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{25(x-3)}=24$

$\Leftrightarrow 3\sqrt{x-3}+5\sqrt{x-3}=24$

$\Leftrightarrow 8\sqrt{x-3}=24$

$\Leftrightarrow \sqrt{x-3}=3$

$\Leftrightarrow x-3=9$

$\Leftrightarrow x=12$ (tm)

Akai Haruma
28 tháng 12 2023 lúc 14:41

Bài 1:

c. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow x^2-5x+6-2(\sqrt{x-2}-1)=0$

$\Leftrightarrow (x-2)(x-3)-2.\frac{x-3}{\sqrt{x-2}+1}=0$

$\Leftrightarrow (x-3)[(x-2)-\frac{2}{\sqrt{x-2}+1}]=0$

$x-3=0$ hoặc $x-2=\frac{2}{\sqrt{x-2}+1}$

Nếu $x-3=0$

$\Leftrightarrow x=3$ (tm) 

Nếu $x-2=\frac{2}{\sqrt{x-2}+1}$

$\Leftrightarrow a^2=\frac{2}{a+1}$ (đặt $\sqrt{x-2}=a$)

$\Leftrightarrow a^3+a^2-2=0$

$\Leftrightarrow a^2(a-1)+2a(a-1)+2(a-1)=0$

$\Leftrightarrow (a-1)(a^2+2a+2)=0$

Hiển nhiên $a^2+2a+2=(a+1)^2+1>0$ với mọi $a$ nên $a-1=0$

$\Leftrightarrow a=1\Leftrightarrow \sqrt{x-2}=1\Leftrightarrow x=3$ (tm)

Vậy pt có nghiệm duy nhất $x=3$.

Akai Haruma
28 tháng 12 2023 lúc 14:42

Bài 2:

ĐKXĐ: $x\geq 0; x\neq 4$

\(A=\frac{\sqrt{x}(\sqrt{x}-2)-\sqrt{x}(\sqrt{x}+2)}{(\sqrt{x}+2)\sqrt{x}-2)}.\frac{\sqrt{x}+2}{2}\\ =\frac{-4\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{\sqrt{x}+2}{2}\\ =\frac{-2\sqrt{x}}{\sqrt{x}-2}=\frac{2\sqrt{x}}{2-\sqrt{x}}\)

ĐỖ NV1
Xem chi tiết
YangSu
25 tháng 4 2023 lúc 21:01

\(\left(\dfrac{2}{\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x+\sqrt{x}}\right):\dfrac{2}{\sqrt{x}+1}\left(x\ge0\right)\)

\(=\left(\dfrac{2}{\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+1\right)}\right).\dfrac{\sqrt{x}+1}{2}\)

\(=\dfrac{2\sqrt{x}-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{2}\)

\(=\dfrac{\sqrt{x}+2}{2\sqrt{x}}\)

Hùng Chu
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2021 lúc 21:57

\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

nthv_.
25 tháng 10 2021 lúc 21:59
C-Chi Nợn
Xem chi tiết
Hquynh
12 tháng 3 2023 lúc 22:12

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-3\sqrt{x}-2}{x-4}\right):\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\\ =\dfrac{x+2\sqrt{x}+x-\sqrt{x}-2\sqrt{x}+2-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\times\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\\ =\dfrac{2x-4\sqrt{x}}{\sqrt{x}-2}\times\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\times\dfrac{1}{\sqrt{x}-2}=\dfrac{2\sqrt{x}}{\sqrt{x}-2}\)

C-Chi Nợn
Xem chi tiết
T . Anhh
12 tháng 3 2023 lúc 21:56

Với \(x\ge0;x\ne4\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{x-4}{\sqrt{x}-2}\)

\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}-\sqrt{x}-2-3\sqrt{x}+2}{x-4}.\dfrac{x-4}{\sqrt{x}-2}\)

\(=\dfrac{2x-4\sqrt{x}}{x-4}.\dfrac{x-4}{\sqrt{x}-2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=2\sqrt{x}\)

Nguyễn Thị Kim Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 20:35

Sửa đề: \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{x-9}\)

\(=\dfrac{x+3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\)

\(=\dfrac{9\sqrt{x}-9}{x-9}\)