Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Diệp Thy
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 19:05

Bài 1: 

a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)

\(=\dfrac{2x}{x-1}\)

Hoang Minh
Xem chi tiết
HT.Phong (9A5)
5 tháng 8 2023 lúc 9:33

a) Thay x=64 vào Q ta có:

\(Q=\dfrac{\sqrt{64}-2}{\sqrt{64}-3}=\dfrac{8-2}{8-3}=\dfrac{6}{5}\)

b) \(P=\dfrac{x}{x-4}-\dfrac{1}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\)

\(P=\dfrac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-2}\left(dpcm\right)\)

Nguyen Thuy Dung
Xem chi tiết
Nguyễn Ngọc Mai
11 tháng 4 2018 lúc 19:54
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
Huy Hoang
5 tháng 6 2020 lúc 23:01

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

Khách vãng lai đã xóa
Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 5 2022 lúc 7:59

a: \(Q=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}-3=\sqrt{x}-3\)

b: Để \(Q=2\) thì \(\sqrt{x}=5\)

hay x=25

WonMaengGun
Xem chi tiết
YangSu
7 tháng 8 2023 lúc 20:30

\(Q=\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\left(dk:x\ge0,x\ne4\right)\\ =\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{2\left(2-\sqrt{x}\right)+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{4-2\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{-3\sqrt{x}+6}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{-3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{3}{\sqrt{x}+2}\)

\(b,Q=\dfrac{6}{5}\Leftrightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{6}{5}\Rightarrow15-6\left(\sqrt{x}+2\right)=0\Rightarrow15-6\sqrt{x}-12=0\)

\(\Rightarrow-6\sqrt{x}=-3\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\left(tm\right)\)

Vậy \(x=\dfrac{1}{4}\)thỏa mãn đề bài.

Hoàng Thảo Linh
Xem chi tiết
Đức Hiếu
11 tháng 9 2017 lúc 21:07

Bài 1:

a, Ta có:

\(\dfrac{x.\dfrac{xy}{x-y}}{x+\dfrac{xy}{x-y}}-\dfrac{y.\dfrac{xy}{x-y}}{y-\dfrac{xy}{x-y}}\)

\(=\dfrac{\dfrac{x^2y}{x-y}}{x+\dfrac{xy}{x-y}}-\dfrac{\dfrac{xy^2}{x-y}}{y-\dfrac{xy}{x-y}}\)

\(=\dfrac{\left(\dfrac{x^2y}{x-y}\right)\left(y-\dfrac{xy}{x-y}\right)-\left(\dfrac{xy^2}{x-y}\right)\left(x+\dfrac{xy}{x-y}\right)}{\left(x+\dfrac{xy}{x-y}\right)\left(y-\dfrac{xy}{x-y}\right)}\)

\(=\dfrac{\dfrac{x^2y^2}{x-y}-\dfrac{x^3y^2}{\left(x-y\right)^2}-\dfrac{x^2y^2}{x-y}-\dfrac{x^2y^3}{\left(x-y\right)^2}}{xy-\dfrac{x^2y}{x-y}+\dfrac{xy^2}{x-y}-\dfrac{x^2y^2}{\left(x-y\right)^2}}\)

\(=\dfrac{-\left(\dfrac{x^3y^2+x^2y^3}{\left(x-y\right)^2}\right)}{xy-\left(\dfrac{x^2y-xy^2}{x-y}\right)-\dfrac{x^2y^2}{\left(x-y\right)^2}}\)

\(=-\dfrac{\dfrac{x^2y^2\left(x+y\right)}{\left(x-y\right)^2}}{xy-\left(\dfrac{xy\left(x-y\right)}{\left(x-y\right)}\right)-\dfrac{x^2y^2}{\left(x-y\right)^2}}\)

\(=\dfrac{\dfrac{x^2y^2\left(x+y\right)}{\left(x-y\right)^2}}{\dfrac{x^2y^2}{\left(x-y\right)^2}}=x+y\)

Chúc bạn học tốt!! Làm một câu mà toát cả mồ hôi!

Nguyễn Hải Dương
11 tháng 9 2017 lúc 20:13

ài 1 chia rthay vào rút gọn tự làm đê

Nguyễn Hải Dương
12 tháng 9 2017 lúc 20:38

Ta có: \(\dfrac{x^2-10x+25}{x^2-5x}=\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}\)

Để giá trị của phân thức đại số băng 0:

\(\Leftrightarrow x-5=0\)

\(\Rightarrow\dfrac{0}{0}\)

Vậy không có giá trị nào thõa mãn đề bài:

P/S: cái này ko bt máy solve thì ra 5 nhưng ko bt có thõa mãn ko nữa chế nào ranh thì sửa hộ :D

Phan Hoàng Linh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 6 2022 lúc 21:31

\(P=\dfrac{x^2-x-2+x^2+x-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2x^2-4}{\left(x-1\right)\left(x+1\right)}\)

Để P=2Q thì \(2x^2-4=2\left(x^2-2\right)\)

=>0x=0(luôn đúng)

Vậy: S=R\{1;-1}

Đỗ Linh Chi
Xem chi tiết
Nguyễn Quang Định
11 tháng 4 2017 lúc 8:28

:v Thay cái câu đó = mấy cái dấu roài giải BPT thôi mà

Trần Thị Quỳnh Như
2 tháng 5 2017 lúc 14:49

Nếu dễ vậy sao bạn ko làm cho rõ đi định quang

Đỗ Linh Chi
2 tháng 5 2017 lúc 21:02

mk làm xong hết rối k cần nữa đâu

Nguyễn Huỳnh Minh Thư
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 7 2017 lúc 5:16

Với  x ≥ 0 ,   x ≠ 1 ,   x ≠ 4 ta có:

Q = x + 27 . P x + 3 x − 2 = x + 27 x + 3 = x − 9 + 36 x + 3 = x − 3 + 36 x + 3 = − 6 + x + 3 + 36 x + 3 ≥ − 6 + 12 = 6