Tính lim x → a x 4 - a 4 x - a .
4. Tính giới hạn \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-x-1}{2x^2-x}_{ }\)
5. Tính giới hạn:
a) \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{x^2-4}_{ }\)
b) \(\lim\limits_{x\rightarrow3^-}\dfrac{x+3}{x-3}_{ }\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-\left(x+1\right)}{2x^2-x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x^2+1}-\left(x+1\right)\right)\left(\sqrt{x^2+1}+x+1\right)}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-2x}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-2}{\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)
\(=\dfrac{-2}{\left(0-1\right)\left(\sqrt{1}+1\right)}=1\)
a. \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\lim\limits_{x\rightarrow2}\dfrac{1}{x+2}=\dfrac{1}{4}\)
b. \(\lim\limits_{x\rightarrow3^-}\dfrac{x+3}{x-3}=\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}\)
Do \(\lim\limits_{x\rightarrow3^-}\left(-x-3\right)=-6< 0\)
\(\lim\limits_{x\rightarrow3^-}\left(3-x\right)=0\) và \(3-x>0;\forall x< 3\)
\(\Rightarrow\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}=-\infty\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow a^+}\dfrac{\sqrt{x}-a+\sqrt{x-a}}{\sqrt{x^2-a^2}}\)
b) \(\lim\limits_{x\rightarrow7}\dfrac{\sqrt{x+2}-\sqrt[3]{x+20}}{\sqrt[4]{x+9}-2}\)
tính giới hạn
a) \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{2x+10}-4}{3x-9}\)
b) \(\lim\limits_{x\rightarrow7}\dfrac{\sqrt{4x+8}-6}{x^2-9x+14}\)
c) \(\lim\limits_{x\rightarrow5}\dfrac{x^2-8x+15}{2x^2-9x-5}\)
a: \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{2x+10}-4}{3x-9}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{2x+10-16}{3x-9}\cdot\dfrac{1}{\sqrt{2x+10}+4}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{2\left(x-3\right)}{3\left(x-3\right)\cdot\left(\sqrt{2x+10}+4\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{2}{3\left(\sqrt{2x+10}+4\right)}\)
\(=\dfrac{2}{3\cdot\sqrt{6+10}+3\cdot4}=\dfrac{2}{3\cdot4+3\cdot4}=\dfrac{2}{24}=\dfrac{1}{12}\)
b: \(\lim\limits_{x\rightarrow7}\dfrac{\sqrt{4x+8}-6}{x^2-9x+14}\)
\(=\lim\limits_{x\rightarrow7}\dfrac{4x+8-36}{\sqrt{4x+8}+6}\cdot\dfrac{1}{\left(x-2\right)\left(x-7\right)}\)
\(=\lim\limits_{x\rightarrow7}\dfrac{4x-28}{\left(\sqrt{4x+8}+6\right)\cdot\left(x-2\right)\left(x-7\right)}\)
\(=\lim\limits_{x\rightarrow7}\dfrac{4}{\left(\sqrt{4x+8}+6\right)\left(x-2\right)}\)
\(=\dfrac{4}{\left(\sqrt{4\cdot7+8}+6\right)\left(7-2\right)}\)
\(=\dfrac{4}{5\cdot12}=\dfrac{4}{60}=\dfrac{1}{15}\)
c: \(\lim\limits_{x\rightarrow5}\dfrac{x^2-8x+15}{2x^2-9x-5}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\left(x-3\right)\left(x-5\right)}{2x^2-10x+x-5}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\left(x-3\right)\left(x-5\right)}{\left(x-5\right)\left(2x+1\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{x-3}{2x+1}=\dfrac{5-3}{2\cdot5+1}=\dfrac{2}{11}\)
tính giới hạn
a) \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{2x+8}-4}{x-4}\)
b) \(\lim\limits_{x\rightarrow2}\dfrac{x^2-4}{\sqrt{4x+1}-3}\)
c) \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-\sqrt{x+2}}\)
a: \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{2x+8}-4}{x-4}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{2x+8-16}{\sqrt{2x+8}+4}\cdot\dfrac{1}{x-4}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{2\left(x-4\right)}{\sqrt{2x+8}+4}\cdot\dfrac{1}{x-4}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{2}{\sqrt{2x+8}+4}=\dfrac{2}{\sqrt{2\cdot4+8}+4}\)
\(=\dfrac{2}{\sqrt{8+8}+4}=\dfrac{2}{4+4}=\dfrac{2}{8}=\dfrac{1}{4}\)
b: \(\lim\limits_{x\rightarrow2}\dfrac{x^2-4}{\sqrt{4x+1}-3}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)}{\dfrac{4x+1-9}{\sqrt{4x+1}+3}}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)}{4\left(x-2\right)}\cdot\left(\sqrt{4x+1}+3\right)\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x+2\right)\left(\sqrt{4x+1}+3\right)}{4}\)
\(=\dfrac{\left(2+2\right)\left(\sqrt{4\cdot2+1}+3\right)}{4}=\sqrt{9}+3=6\)
c: \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-\sqrt{x+2}}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\dfrac{4-x-2}{2+\sqrt{x+2}}}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-x}\cdot\left(\sqrt{x+2}+2\right)\)
\(=\lim\limits_{x\rightarrow2}\left(-\sqrt{x+2}-2\right)\)
\(=-\sqrt{2+2}-2=-2-2=-4\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow2}\dfrac{x+3}{x^2+x+4}=\dfrac{1}{2}\)
b) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2+5x+6}{x^2+3x}=\dfrac{1}{3}\)
a/ \(\lim\limits_{x\rightarrow2}\dfrac{2+3}{4+2+4}=\dfrac{5}{10}=\dfrac{1}{2}\)
b/ \(\lim\limits_{x\rightarrow-3}\dfrac{\left(x+2\right)\left(x+3\right)}{x\left(x+3\right)}=\lim\limits_{x\rightarrow-3}\dfrac{x+2}{x}=\dfrac{-3+2}{-3}=\dfrac{1}{3}\)
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - 3} \left( {4{x^2} - 5x + 6} \right)\);
b) \(\mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{x - 2}}\);
c) \(\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{{x^2} - 16}}\).
a) \(\mathop {\lim }\limits_{x \to - 3} \left( {4{x^2} - 5x + 6} \right) = 4.{\left( { - 3} \right)^2} - 5.\left( { - 3} \right) + 6 = 57\)
b) \(\mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {2x - 1} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {2x - 1} \right) = 2.2 - 1 = 3\)
c) \(\begin{array}{c}\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{{x^2} - 16}} = \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)\left( {x + 4} \right)}} = \mathop {\lim }\limits_{x \to 4} \frac{1}{{\left( {\sqrt x + 2} \right)\left( {x + 4} \right)}}\\ = \frac{1}{{\left( {\sqrt 4 + 2} \right)\left( {4 + 4} \right)}} = \frac{1}{{32}}\end{array}\)
Tính các giới hạn sau:
a) \(\lim\limits_{x\rightarrow0^-}\dfrac{2\left|x\right|+x}{x^2-x}\)
b) \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2-x}-\sqrt{x^2-1}\right)\)
c) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{1+x^4+x^6}}{\sqrt{1+x^3+x^4}}\)
a: \(\lim\limits_{x->0^-^-}\dfrac{-2x+x}{x\left(x-1\right)}=lim_{x->0^-}\left(\dfrac{-x}{x\left(x-1\right)}\right)\)
\(=lim_{x->0^-}\left(\dfrac{-1}{x-1}\right)=\dfrac{-1}{0-1}=\dfrac{-1}{-1}=1\)
b: \(=lim_{x->-\infty}\left(\dfrac{x^2-x-x^2+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)
\(=lim_{x->-\infty}\left(\dfrac{-x+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)
\(=lim_{x->-\infty}\left(\dfrac{-1+\dfrac{1}{x}}{-\sqrt{1-\dfrac{1}{x^2}}-\sqrt{1-\dfrac{1}{x^2}}}\right)=\dfrac{-1}{-2}=\dfrac{1}{2}\)
ai tìm ra cách sai trong 2 cái giải này giúp mình với: đề bài là tính \(lim\sqrt{x^4+x^2}-\sqrt[3]{x^6+1}\)
C1:\(lim\sqrt{x^4+x^2}-\sqrt[3]{x^6+1}=lim\left(x^2\left(\sqrt{1+\dfrac{1}{x^2}}\right)-\sqrt[3]{1+\dfrac{1}{x^6}}\right)\)=lim x2(1-1)=0
C2:\(lim\sqrt{x^4+x^2}-\sqrt[3]{x^6+1}=lim\left(\sqrt{x^4+x^2}-x^2-\sqrt[3]{x^6+1}+x^2\right)\\ \)=\(lim\left(\dfrac{x^2}{\sqrt{x^4+x^2}+x^2}-\dfrac{1}{\left(\sqrt[3]{x^6+1}\right)^2+x^2.\sqrt[3]{x^6+1}+x^4}\right)\)
=lim(\(\dfrac{1}{2}-0\))= \(\dfrac{1}{2}\)
mình không biết cách nào đúng ai chỉ cho mình với
Hiển nhiên là cách đầu sai rồi em
Khi đến \(\lim x^2\left(1-1\right)=+\infty.0\) là 1 dạng vô định khác, đâu thể kết luận nó bằng 0 được
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow4^-}\dfrac{2x-5}{x-4}\)
b) \(\lim\limits_{x\rightarrow+\infty}\left(-x^3+x^2-2x+1\right)\)
a/ \(=\lim\limits_{x\rightarrow4^-}\dfrac{5-2x}{4-x}=\dfrac{-3}{0}=-\infty\)
b/ \(=\lim\limits_{x\rightarrow+\infty}x^3\left(-1+\dfrac{1}{x}-\dfrac{2}{x^2}+\dfrac{1}{x^3}\right)=-\infty\)
Tính giới hạn
a) \(\lim\limits_{x\rightarrow4^-}\dfrac{2x-5}{x-4}=-\infty\)
b) \(\lim\limits_{x\rightarrow+\infty}\left(-x^3+x^2-2x+1\right)\)
a/ \(=\lim\limits_{x\rightarrow4^-}\dfrac{5-2x}{4-x}=-\infty\)
b/ \(=\lim\limits_{x\rightarrow+\infty}x^3\left(-1\right)=-\infty\)