Cho dãy số ( u n ) được xác định như sau u 1 = 2 u n + 1 + 4 u n = 4 - 5 n .Tính tổng S = u 2018 - 2 u 2017
A. S = 2015 - 3 . 4 2017
B. S = 2016 - 3 . 4 2017
C. S = 2017 + 3 . 4 2017
D. S = 2018 + 3 . 4 2017
Cho dãy số (un) được xác định như sau: u1= 2017; un-1= n2(un-1 - un) với mọi n ∈ N*, n ≥2. Tìm giới hạn dãy số (un)
Lời giải:
$\frac{u_{n-1}}{u_n}=\frac{n^2}{n^2-1}>0$ với mọi $n\geq 2$ nên $u_{n-1}, u_n$ luôn cùng dấu.
Mà $u_1=2017>0$ nên $u_n>0$ với mọi $n=1,2,...$
Mặt khác:
$n^2(u_{n-1}-u_n)=u_{n-1}>0\Rightarrow u_{n-1}>u_n$ nên dãy $(u_n)$ là dãy giảm.
Dãy giảm và bị chặn dưới nên $u_n$ hội tụ. Đặt $\lim u_n=a$.
Ta có: $a=n^2(a-a)\Rightarrow a=0$
Vậy $\lim u_n=0$
Cho dãy số (un) được xác định như sau: u 1 = 1 u n = 3 u n - 1 + 1 2 u n - 1 - 2 , n ≥ 2 Viết 4 số hạng đầu của dãy và chứng minh rằng un > 0, ∀ n
Chọn B.
Ta có: u1 = 1; u2 = 3/2; u3 = 17/6; u4 = 227/34.
Ta chứng minh un > 0 bằng quy nạp.
Giả sử un > 0, khi đó:
Nên .
Cho dãy số u n được xác định như sau: u 1 = 2 u n + 1 + 4 u n = 4 − 5 n n ≥ 1 .
Tính tổng S = u 2018 − 2 u 2017 .
A. S = 2015 − 3.4 2017
B. S = 2016 − 3.4 2018
C. S = 2016 + 3.4 2018
D. S = 2015 + 3.4 2017
Cho dãy số (Un) được xác định như sau: \(u_1=2023\), \(u_{n-1}=n^2.\left(u_{n-1}-u_n\right)\), với mọi n thuộc N*, \(n\ge2\). Chứng minh rằng dãy số (Un) có giới hạn và tìm giới hạn đó
Cho dãy số (Un) được xác định như sau \(u_1=2023\), \(u_{n-1}=n^2.\left(u_{n-1}-u_n\right)\), với mọi n thuộc N*, \(n\ge2\) . Chứng minh rằng dãy số (Un) có giới hạn và tìm giới hạn đó
Cho dãy số (Un) được xác định như sau: Un là số dư của số tự nhiên n trong phép chia cho 6
a) Tính 7 số hạng đầu tiên của dãy số
b) Chứng minh rằng: Nếu \(U_m=U_n\) thì \(\left|m-n\right|\) chia hết cho 6
a: \(u_1=1;u_2=2;u_3=3;u_4=4;u_5=5;u_6=0;u_7=1\)
b: m=6k+a;n=6c+d
\(u_m=u_n\)
=>a=d
=>\(m=6k+a;n=6c+a\)
\(\left|m-n\right|=\left|6k+a-6c-a\right|=\left|6k-6c\right|=6\left|k-c\right|⋮6\)
Cho dãy số được xác định như sau:
\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\sqrt{1+2u_nu_{n+1}}\end{matrix}\right.\) \(\forall n\in N^{\cdot}\)
XD CTSHTQ \(u_n\)
Trong các dãy số \(\left( {{u_n}} \right)\) được xác định như sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) \({u_n} = {n^2} + 2\)
b) \({u_n} = - 2n + 1\)
c) \({u_n} = \frac{1}{{{n^2} + n}}\)
a) Ta có:
\(\begin{array}{l}{n^2} \ge 1\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow {n^2} + 2 \ge 3\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)
Dãy số bị chặn dưới
b) Ta có:
\(\begin{array}{l} - 2n \ge - 2\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow - 2n + 1 \ge - 1\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)
Dãy số bị chặn dưới
c) Ta có:
\(\begin{array}{l}{n^2} \ge 1\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow {n^2} + n \ge 2\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow 0 \le \frac{1}{{{n^2} + n}} \le \frac{1}{2}\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)
Dãy số bị chặn
Cho dãy số (un) xác định như sau: u1= 2; un+1 - un - 2 + 2(4un+1 - \(\sqrt{4u_n+1}\)) = 0, ∀n∈ N*. Tìm số hạng tổng quát un của dãy số trên