Tìm x thuộc Z biết :
a, (x-3).(x-7) < 0
b, (x-2).(x+4)< 0
c, (x+3).(x-3)< 0
1.tìm x,y biết
a, x.(y-3)≥0
b, (2.x-1).(y-1)≤0
c,(x-1).(2.k+1)≥0
2. tìm x,y ϵ Z biết
a, x(x+3)=0
b,(x-2).(5-x)=0
c,(x-1).(x^2+1)=0
d, x.y+3.x-7.y=21
e,x.y+3.x-2y=11
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
1.tìm x,y biết
a, x.(y-3)≥0
b, (2.x-1).(y-1)≤0
c,(x-1).(2.k+1)≥0
2. tìm x,y ϵ Z biết
a, x(x+3)=0
b,(x-2).(5-x)=0
c,(x-1).(x^2+1)=0
d, x.y+3.x-7.y=21
e,x.y+3.x-2y=11
GIẢI GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP LẮM Ạ!!!!!
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Tìm x∈Z, biết:
a)x.(x-6)=0
b)(-7-x).(-x+5)=0
c)(x+3).(x-7)=0
d)(x-3).(x2+12)=0
e)(x+1).(2-x) ≥0
f)(x-3).(x-5) ≤0
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
c) => \(\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
Tìm x biết:
a) (2x - 3).(x + 5) = 0
b) 3x.(x - 2) - 7.(x - 2) = 0
c) 5x.(2x - 3) - 6x + 9 = 0
a)(2x-3)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy x=3/2 hoặc x=-5
a) \(\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};-5\right\}\)
b) \(3x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{2;\dfrac{7}{2}\right\}\)
c) \(5x\left(2x-3\right)-6x+9=0\)
\(\Leftrightarrow5x\left(2x-3\right)-3\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\5x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};\dfrac{3}{5}\right\}\)
a: Ta có: \(\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
b: Ta có: \(3x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{3}\end{matrix}\right.\)
c: Ta có: \(5x\left(2x-3\right)-6x+9=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Tìm x :
a, (–31) . (x +7)=0 b, (8 – x) . (x + 13) = 0 c,(x2– 25) . (3– x )=0 d, ( x - 3 ) (x2+4) =0 |
\(a,\left(-31\right).\left(x+7\right)=0\\ \Rightarrow x+7=0\\ \Rightarrow x=-7\\ b,\left(8-x\right).\left(x+13\right)=0\\ \Rightarrow\left[{}\begin{matrix}8-x=0\\x+13=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-13\end{matrix}\right.\\ c,\left(x^2-25\right)\left(3-x\right)=0\\ \Rightarrow\left(x-5\right)\left(x+5\right)\left(3-x\right)=0\\\Rightarrow \left[{}\begin{matrix}x-5=0\\x+5=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\\x=3\end{matrix}\right.\\ d,\left(x-3\right)\left(x^2+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x^2=-4\left(loại\right)\end{matrix}\right.\\ \Rightarrow x=3\)
a, (–31) . (x +7)=0
<=> x +7 = 0
<=> x = -7
Vậy x \(\in\left\{-7\right\}\)
b, (8 – x) . (x + 13) = 0
<=> \(\left[{}\begin{matrix}8-x=0\\x+13=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=8\\x=-13\end{matrix}\right.\)
Vậy x \(\in\left\{8;-13\right\}\)
c,(x2– 25) . (3– x )=0
<=> (x - 5) (x + 5) (3 - x) = 0
<=> \(\left[{}\begin{matrix}x-5=0\\x+5=0\\3-x=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=5\\x=-5\\x=3\end{matrix}\right.\)
Vậy x \(\in\left\{5;-5;3\right\}\)
d, ( x - 3 ) (x2 + 4) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\x^2+4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=3\\x^2=-4\end{matrix}\right.\)(vô lý)
Vậy x \(\in\left\{3\right\}\)
tìm x biết
a x^2 (2x+15)+4(2x+15)=0
b 5x(x-2)-3(x-2)=0
c 2(x+3)-x^2-3x=0
a
\(x^2\left(2x+15\right)+4\left(2x+15\right)=0\\ \Leftrightarrow\left(2x+15\right)\left(x^2+4\right)=0\\ \Leftrightarrow2x+15=0\left(x^2+4>0\forall x\right)\\ \Leftrightarrow2x=-15\\ \Leftrightarrow x=-\dfrac{15}{2}\)
b
\(5x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\5x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0+2=2\\x=\dfrac{0+3}{5}=\dfrac{3}{5}\end{matrix}\right.\)
c
\(2\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\\ \Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\2-x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0-3=-3\\x=2-0=2\end{matrix}\right.\)
a: =>(2x+15)(x^2+4)=0
=>2x+15=0
=>2x=-15
=>x=-15/2
b; =>(x-2)(5x-3)=0
=>x=2 hoặc x=3/5
c: =>(x+3)(2-x)=0
=>x=2 hoặc x=-3
Tìm x biết:
a) 7x.(2x - 3) - (4x2 - 9) = 0
b) (2x - 7).(x - 2).(x2 - 4) = 0
c) (9x2 - 25) - (6x - 10) = 0
a) \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\Rightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\Rightarrow\left(2x-3\right)\left(7x-2x+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-3=0\\5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
b) \(\left(2x-7\right).\left(x-2\right)\left(x^2-4\right)=0\Rightarrow\left(2x-7\right)\left(x-2\right)^2\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}2x-7=0\\\left(x-2\right)^2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)
c)\(\left(9x^2-25\right)-\left(6x-10\right)=0\Rightarrow\left(3x-5\right)\left(3x+5\right)-2\left(3x-5\right)=0\Rightarrow\left(3x-5\right)\left(3x+5-2\right)=0\Rightarrow\left[{}\begin{matrix}3x-5=0\\3x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=1\end{matrix}\right.\)
a: Ta có: \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\)
\(\Leftrightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
b: Ta có: \(\left(2x-7\right)\left(x-2\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)^2\cdot\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)
c: Ta có: \(\left(9x^2-25\right)-\left(6x-10\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+5-2\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)
tìm x biết
a/ (x - 4)(x + 4)- x(x + 2)=0
b/ 3x(x - 2)- x + 2 = 0
c/ 6x - 12x2 = 0
d/ 4x(3 - x)+(x - 2)(x + 2)= 0
a) (x-4)(x+4)-x(x+2)=0
x2-16-x2-2x = 0
-16 - 2x = 0
2x = -16
x = -16/2
x = -8
b) 3x(x-2)-x+2=0
(3x-1)(x-2)=0
=> x ∈ {1/3 ; 2 }
c) 6x - 12x2 = 0
6x(1-2x) = 0
=> x ∈ {0; 1/2 }
d) mình thấy có vẻ hơi sai đề nên mình ko giải được, bạn thông cảm nha
d/ 4x (3 - 1/4 x) + (x -2) ( x+ 2)
câu d bị sai đề
tìm x thuộc Q:
a,(x-2)(x-1/2)<0
b,(1/3+x)(x+1)>0
c,x+3/x-2,5 > 0
d,x+0,5/3-x <0
a:Ta có: \(\left(x-2\right)\left(x-\dfrac{1}{2}\right)< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}>0\\x-2< 0\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< x< 2\)
b: Ta có: \(\left(x+\dfrac{1}{3}\right)\left(x+1\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{1}{3}\\x< -1\end{matrix}\right.\)
Tìm x :
a , ( x-1 )( x-4 ) > 0
b , ( x-6 )( x-7 ) < 0
c , ( x-1 )( x-2 ) bé hơn bằng 0
d , ( x-2 )( x- 2/3 ) lớn hơn bằng 0 .
a) Ta có: (x-1)(x-4)>0
\(\Leftrightarrow\left[{}\begin{matrix}x-4>0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>4\\x< 1\end{matrix}\right.\)
b) Ta có: (x-6)(x-7)<0
\(\Leftrightarrow\left\{{}\begin{matrix}x-6>0\\x-7< 0\end{matrix}\right.\Leftrightarrow6< x< 7\)
c) Ta có: \(\left(x-1\right)\left(x-2\right)\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x-2\le0\end{matrix}\right.\Leftrightarrow1\le x\le2\)
d) Ta có: \(\left(x-2\right)\left(x-\dfrac{2}{3}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2\ge0\\x-\dfrac{2}{3}\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le\dfrac{2}{3}\end{matrix}\right.\)
a) Ta có: (x-1)(x-4)>0
⇔[x−4>0x−1<0⇔[x>4x<1⇔[x−4>0x−1<0⇔[x>4x<1
b) Ta có: (x-6)(x-7)<0
⇔{x−6>0x−7<0⇔6<x<7⇔{x−6>0x−7<0⇔6<x<7
c) Ta có: (x−1)(x−2)≤0(x−1)(x−2)≤0
⇔{x−1≥0x−2≤0⇔1≤x≤2⇔{x−1≥0x−2≤0⇔1≤x≤2
d) Ta có: (x−2)(x−23)≥0(x−2)(x−23)≥0
⇔⎡⎣x−2≥0x−23≤0⇔⎡⎣x≥2x≤23