Giả sử ∫ a b f x d x = 2 v à ∫ c b f x d x = 3 và a < b < c thì ∫ a c f x d x bằng bao nhiêu ?
A. 5
B. 1
C. -1
D. -5
Cho f(x)=ax+b; g(x)=cx+d .
a) Chứng minh nếu f(x)=g(x) suy ra a=c;b=d
b) Giả sử f(x) không bằng g(x) với mọi x, tìm điều kiện của a, b, c, d để f(x) và g(x) ko nhận giá trị bằng nhau
Mk chỉ biết câu a thôi nha bạn, còn câu b để mk suy nghĩ đã nha...
a, Thay \(x=0\) vào f(x) và g(x):
=> \(f\left(0\right)=g\left(0\right)\)
Ta có: \(f\left(0\right)=a.0+b=b\)
\(g\left(0\right)=c.0+d=d\)
Mà \(f\left(0\right)=g\left(0\right)\) nên:
=> b = d (đpcm)
Thay \(x=1\) vào f(x) và g(x):
=> \(f\left(1\right)=g\left(1\right)\)
Lạt có: \(f\left(1\right)=a.1+b=a+b\)
\(g\left(1\right)=c.1+d=c+d\)
Mà \(f\left(1\right)=g\left(1\right)\) nên:
=> \(a+b=c+d\)
=> \(a=c\) (đpcm)
Chúc bạn học tốt! Nhớ tick theo dõi cho mk vs. Mk xin chân thành cảm ơn.
1. Cho f(x) là đa thức bậc 2 và a, b, c là 3 số thực phân biệt thỏa mãn f(a)=bc, f(b)=ca, f(c)=ab. Chứng minh rằng f(a+b+c)=ab+bc+ca.
2. Giả sử a, b, c, d là 2 trong 4 nghiệm của P(x)=\(x^4+x^3-1\), chứng minh rằng ab là nghiệm của \(x^6+x^4+x^3-x^2-1\)
Em xin cảm ơn!
Cho đa thức bậc nhất: f(x)=ax+b và g(x)=bx+a (a,b khác 0) giả sử f(x) có nghiệm là \(x_0\) tìm nghiệm của g(x-
Ta có: f(x0)= 0 <=> a.x0+b= 0
<=> b= -a.x0 (1)
Gọi nghiệm của g(x) là x1 => g(x1)=0 <=> b.x1+a= 0
Thay (1) vào => -a.x0.x1+a= 0
=> a.(-x0.x1+1)= 0
Do a khác 0 => -x0.x1+1= 0
=> x0.x1= 1
=> x1= 1/x0
Giúp mình với
Giả sử hàm số y=f(x) liên tục, dương trên (0;+vô cùng) thỏa mãn f(1)=1 và \(f^2\left(x\right)=x^3f^'\left(x\right);\forall x\in\left(0;+vocung\right)\) . Giá trị f(2) thuộc khoảng nào dưới đây
A(0;1) B(2;4) C(1;2) D(6;7)
Kiến thức bài này nằm ở giữa gần cuối chương trình lớp 12, lớp 11 ko thể giải được đâu bạn
\(f^2\left(x\right)=x^3f'\left(x\right)\Rightarrow\frac{f'\left(x\right)}{f^2\left(x\right)}=\frac{1}{x^3}\)
Lấy nguyên hàm 2 vế:
\(\int\frac{f'\left(x\right)}{f^2\left(x\right)}dx=\int\frac{dx}{x^3}\Leftrightarrow\frac{-1}{f\left(x\right)}=-\frac{1}{2x^2}+C\)
Do \(f\left(1\right)=1\Rightarrow\frac{-1}{1}=-\frac{1}{2}+C\Rightarrow C=-\frac{1}{2}\)
\(\Rightarrow-\frac{1}{f\left(x\right)}=-\frac{1}{2x^2}-\frac{1}{2}\Rightarrow\frac{1}{f\left(x\right)}=\frac{1}{2x^2}+\frac{1}{2}\Rightarrow f\left(x\right)=\frac{2x^2}{x^2+1}\)
\(\Rightarrow f\left(2\right)=\frac{8}{5}\) \(\Rightarrow\) đáp án C
Giả sử f(x) là hàm số liên tục trên đoạn [a; b], F(x) và G(x) là hai nguyên hàm của f(x). Chứng minh rằng F(b) – F(a) = G(b) – G(a), (tức là hiệu số F(b) – F(a) không phụ thuộc việc chọn nguyên hàm).
- Vì F(x) và G(x) đều là nguyên hàm của f(x) nên tồn tại một hằng số C sao cho: F(x) = G(x) + C
- Khi đó F(b) – F(a) = G(b) + C – G(a) – C = G(b) – G(a).
Cho tam thức bậc hai \(f\left(x\right)=x^2+bx+c\). Giả sử phương trình \(f\left(x\right)=x\) có \(2\) nghiệm phân biệt. Chứng minh rằng nếu \(\left(b+1\right)^2>4\left(b+c+1\right)\) thì phương trình \(f\left(f\left(x\right)\right)=x\) có \(4\) nghiệm phân biệt.
a, chứng minh đẳng thức
\(x^n-y^n=\left(x-y\right)\left(x^{n-1}+x^{n-2}y+x^{n-3}y^2+...+xy^{n-2}+y^{n-1}\right)\)
b, cho F(x) là đa thức với các hệ số nguyện. giả sử F(2011) và F(2012) là các số nguyên lẻ. chứng minh đa thức F(x) không có nghiệm nguyên
Giả sử y=f(x) là hàm số xác định trên tập đối xứng D.CMR
a,Hàm số \(F\left(x\right)=\frac{1}{2}\left[f\left(x\right)+f\left(-x\right)\right]\) là hàm số chẵn xác định trên D
b,Hàm số y=f(x) có thể phân tích thành tổng của 1 hàm số chẵn và 1 hàm số lẻ
Cho hàm số y=5x2-4
a) Chứng tỏ : f(x) = f(-x)
b) Giả sử x1<x2<0. Chứng tỏ f(x1)>f(x2)
y=f(x)=5x2 -4
a) f(x) =5x2 -4 = 5(-x)2 -4 = f (-x) ; vì (-x)2 =x 2
b) x1<x2<0 => x1+x2<0 và x1 - x2 <0
f(x1) - f(x2) = (5x12- 4 )- (5x22 -4) = 5(x1-x2)(x1+x2) >0 ( theo trên)
=> f(x1) > f(x2)
Với mỗi số x có 2 chữ sô ( giả sử là ab )
Cho f(x) = ab + a + b - a.b
Với giá trị nào thì f(x) lớn nhất ?