Cho đa thức f(x) với hệ số nguyên. a) Chứng minh với 2 số nguyên phân biệt a và b thì \(f\left(a\right)-f\left(b\right)⋮\left(a-b\right)\)
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức \(f\left(x\right)=x^2+x.g\left(x^3\right)\) không chia hết cho đa thức \(x^2-x+1\)
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức \(f\left(x\right)=x^2+x.g\left(x^3\right)\) không chia hết cho đa thức: \(x^2-x+1\)
1)Chứng minh rằng với mọi số nguyên x và y thì
(1+x^2)(1+y^2)+4xy+2(x+y)(1+xy) là số chính phương
2)Tìm các số nguyên a,b,c sao cho đa thức f(x) = (x+a)(x-4)-7 phân tích thành thừa số được f(x) r (x+b)(x+c)
cho f(x) là đa thức với hệ số nguyên; \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\) ( \(a_i\in Z,i=\overline{0,n}\) )
a,b là 2 số nguyên khác nhau. a) Cmr: \(f\left(a\right)-f\left(b\right)⋮a-b\)
b) Áp dụng : Cmr: không có đa thức f(x) nào với hệ số nguyeencos thể có giá trị f(7) = 5, f(15) = 9
Bài 1 : Tìm GTLN và GTNN của biểu thức \(A=\frac{27-12x}{x^2+9}\)
Bài 2 : Cho 2 số chính phương liên tiếp. Cmr : Tổng của 2 số đó + với tích của chúng = 1 số chính phương lẻ
Bài 3 : Cho đa thức \(F\left(x\right)=x^3+\text{ax}^2+bx+c\) (Với a, b, c ∈ R ). Biết đa thức F( x ) chia cho đa thức x + 1 dư - 4, đa thức F( x ) chia cho đa thức x - 2 dư 5
Hãy tính giá trị của \(A=\left(a^{2019}+b^{2019}\right)\left(b^{2020}-c^{2020}\right)\left(c^{2021}+a^{2021}\right)\)
Cho 2 đa thức ƒ (x)và g(x)có hệ số nguyên thỏa mãn ƒ (x^3)+g(x^3)⋮x^2−x+1
Chứng minh: \(\left\{{}\begin{matrix}f\left(x\right)\\g\left(x\right)\end{matrix}\right.\)\(⋮x+1\)
Bài 1
a)Tính giá trị của biểu thức P =\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{2016}{2^{2016}}\)
b)Cho x và y là 2 số thực thỏa mãn \(x^2+y^2=1\).Tìm giá trị bé nhấ của biểu thức P=x6+y6
c)Tìm x nếu \(\left(x^2-4x+1\right)^3=\left(x^2-x-1\right)^3-\left(3x-2\right)^3\)
d)Với a và b là các số nguyên dương sao cho a+1 và b+2019 là các số chia hết cho 6.Chững minh rằng số 4a+a+b chia hết cho 6
Bài 2
a)Chứng minh rằng với mọi số nguyên x và y thì (1+x2)(1+y2)+4xy+2(x+y)(1+xy) là số chính phương
b)Tìm các số nguyên a,b,c sao cho đa thức f(x)=(x+a)(x-a)-7 phân tích thành thừa số được f(x)=(x+b)(x+c)
Bài 1 :
Tìm tất cả cac số nguyên n để \(2n^2+n-7\) chia hết cho \(n-2\)
Bài 2 : Tìm các hằng số a và b sao cho đa thức f(x) chia hết cho đa thức g(x)
a) \(f\left(x\right)=\left(x^4+ax^2+b\right)\) ; \(g\left(x\right)=\left(x^2-x+1\right)\)
b) \(f\left(x\right)=ax^3+bx^2+5x-50\) ; \(g\left(x\right)=x^2+3x+3\)