Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IK
Bài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EF
Bài 1:
1) Tính nhanh:
d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )
2)Rút gọn và tính giá trị của biểu thức:
b) (x-2)^3-(x-2)(x^2+2x+4)+6(x-2)(x+2)-x(x-1) tại x= 101
c) (x+1)^3-(x+3)(x^2-3x+9)+3(2x-1)^2 tại x= -2
Bài 11: Xác định đa thức f(x) biết f(x) chia hết cho (x-2) dư 5, f(x) chia cho (x-3) dư 7, f(x) chia cho (x-3)(x-2) được thương x^2-1 và có dư
Bài 12: Tìm x tự nhiên sao cho:
a) Giá trị biểu thức x^3+2x-x^2+7 chia hết cho giá trị biểu thức (x^2+1)
b) Giá trị đa thức ( 2x^4-3x^3-x^2+5x-4) chia hết cho giá trị đa thức (x-3)
Bài 13: Tìm x thuộc Z để giá trị biểu thức 8x^2-4x+1 chia hết cho giá trị biểu thức 2x+1
Bài 14: Chứng minh rằng:
a) a^3-a chia hết cho 24a với a là số nguyên tố lớn hơn 3
b) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc Z
c) n^3-13n chia hết cho 6 với mọi n thuộc Z
d) a^5-a chia hết cho 30 với mọi a thuộc Z
Cho đa thức: f(x)= x^4-x^3-x^2+ax+b thỏa mãn khi chia f(x) lần lượt cho các đa thức x+1 và x-3 thì có dư tương ứng là -15 và 45. Hãy xác định các hệ số a, b và tìm tất cả các nghiệm của đa thức f(x)
a, chứng minh đẳng thức
\(x^n-y^n=\left(x-y\right)\left(x^{n-1}+x^{n-2}y+x^{n-3}y^2+...+xy^{n-2}+y^{n-1}\right)\)
b, cho F(x) là đa thức với các hệ số nguyện. giả sử F(2011) và F(2012) là các số nguyên lẻ. chứng minh đa thức F(x) không có nghiệm nguyên
Cho đa thức: \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\) ( với a, b, c, d là các số thực). Biết f(1)=10; f(2)=20; f(3)=30. Tính giá trị của biểu thức: A=f(8)+f(-4)
1.
a) x3y3 + x2y2 +4
b) 2x4 -5x3 +2x2 -x +2
c) (x-3)(x-5)(x-6)(x-10)-24x2
d) (a+b+c)(ab+bc+ca)-abc\
2.Tìm đa thức f(x) chia cho x-3 thì dư 2,f(x) chia cho x+4 thì dư 9,còn f(x) chia cho x2 + x - 12 thì được thương là x2+ 3 và còn dư.
Bài 1 : Cho 2 số a và b thỏa mãn a+b=1.Chứng minh a^3+b^3+ab>=\(\frac{1}{2}\)
Bài 2:Tìm đa thức f(x) biết F(x) chia x+2 dư 10,chia x-2 dư 24,chia \(x^2-4\) được thương -5x và còn dư.
Bài 3 : Tìm dư khi chia \(x^{2015}+x^{1945}+x^{1930}+x^2-x+1\) cho \(x^2-1\)
Bài 4 : Cho ba số a,b,c khác 0 thỏa mãn\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{a}{b}+\frac{c}{b}+\frac{b}{a}\) chứng minh a=b=c
Cho đa thức f(x) = ax^2+bx+c. Chứng minh rằng 1 là nghiệm của đa thức nếu a+b+c=0? Để cho đa thức nhận -1 là nghiệm thì điều kiện của a,b,c như thế nào?
Cho đa thức f(x) thỏa mãn : (x^2+2)f(x)=(x-2)f(x+1) với mọi giá trị của x . Chứng tỏ rằng f(x) có ít nhất hai nghiệm nguyên dương khác nhau
Bài 1
a)Tính giá trị của biểu thức P =\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{2016}{2^{2016}}\)
b)Cho x và y là 2 số thực thỏa mãn \(x^2+y^2=1\).Tìm giá trị bé nhấ của biểu thức P=x6+y6
c)Tìm x nếu \(\left(x^2-4x+1\right)^3=\left(x^2-x-1\right)^3-\left(3x-2\right)^3\)
d)Với a và b là các số nguyên dương sao cho a+1 và b+2019 là các số chia hết cho 6.Chững minh rằng số 4a+a+b chia hết cho 6
Bài 2
a)Chứng minh rằng với mọi số nguyên x và y thì (1+x2)(1+y2)+4xy+2(x+y)(1+xy) là số chính phương
b)Tìm các số nguyên a,b,c sao cho đa thức f(x)=(x+a)(x-a)-7 phân tích thành thừa số được f(x)=(x+b)(x+c)