Tính x biết: x = 1 2 3
1. Biết x+y=3 ; x.y=1. Tính x^2 =y^2;x^3 =y^3;x^4 =y^4
2. Biết x+y=4 ; x.y=2. Tính x^2 =y^2;x^3 =y^3;x^4 =y^4
Sửa đề: Các dấu bằng ở yêu cầu là dấu cộng.
1. Có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^2=3^2\)
\(\Leftrightarrow x^2+2xy+y^2=9\)
\(\Leftrightarrow x^2+y^2=9-2\cdot1=7\) (do \(xy=1\))
\(------\)
Lại có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^3=3^3\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=27\)
\(\Leftrightarrow x^3+y^3+3\cdot1\cdot3=27\) (do x + y = 3; xy = 1)
\(\Leftrightarrow x^3+y^3=18\)
Ta có: \(x^2+y^2=7\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=7^2\)
\(\Leftrightarrow x^4+y^4+2\cdot\left(xy\right)^2=49\)
\(\Leftrightarrow x^4+y^4=49-2\cdot1=47\) (do xy = 1)
A=x^2-x-2/x^2-1+1/x-1-1/x+1
a,Rút gọn A
b,Tính x biết A=3/4
c,Tính giá trị A khi [x-3]=2
\(a,A=\dfrac{x^2-x-2}{x^2-1}+\dfrac{1}{x-1}-\dfrac{1}{x+1}\)
\(\Rightarrow A=\dfrac{x^2-x-2}{\left(x-1\right)\left(x+1\right)}+\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x^2-x-2x+x+1-x+1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x^2-3x+2}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x^2-2x-x+2}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x\left(x-2\right)-\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x-2}{x+1}\)
\(b,A=\dfrac{3}{4}\\ \Rightarrow\dfrac{x-2}{x+1}=\dfrac{3}{4}\\ \Rightarrow4\left(x-2\right)=3\left(x+1\right)\\ \Rightarrow4x-8=3x+3\\ \Rightarrow4x-8-3x-3=0\\ \Rightarrow x-11=0\\ \Rightarrow x=11\)
\(c,\left|x-3\right|=2\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
Thay x=5 vào A ta có:
\(A=\dfrac{x-2}{x+1}=\dfrac{5-2}{5+1}=\dfrac{3}{6}=\dfrac{1}{2}\)
Thay x=1 vào A ta có:
\(A=\dfrac{x-2}{x+1}=\dfrac{1-2}{1+1}=\dfrac{-1}{2}\)
Thu gọn P
\(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
a) Tính P biết \(x=\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
b) Tính P biết \(x=\dfrac{1}{\sqrt{2}-1}-\dfrac{1}{\sqrt{2}+1}\)
cho biết x và y là 2 đại lượng tỷ lệ thuận , X^1 và X^2 là 2 giá trị khác nhau của X , Y^1 và Y^2 là 2 giá trị tương ứng của Y
a) Tính x^1 biết Y^1 = - 3 ; y^2 = -2 , X ^2 =5
b) tính x^2 và Y^2 biết x^2 + Y^2 =10 , x^1 = 2 , Y ^ 1 = 3
tính A=2x+2y+3xy(x+y)+5(x^3y^2+x^2y^3)+4 biết x+y=0
B=(x+y)x^2-y^3(x+y)+(x^2-y^3)+3 biết x+y=-1
a/ \(A=2x+2y+3xy(x+y)+5(x^3y^2+x^2y^3)+4\\=2(x+y)+3xy(x+y)+5x^2y^2(x+y)+4\\=2.0+3xy.0+5x^2y^2.0+4=4\)
b/ \(B=(x+y)x^2-y^3(x+y)+(x^2-y^3)+3\\=(x+y)(x^2-y^3)+(x^2-y^3)+3\\=(x+y+1)(x^2-y^3)+3\\=(-1+1)(x^2-y^3)+3\\=0(x^2-y^3)+3\\=3\)
Bài 1: Tìm x biết : 2x.(x+3)+(2x+3).(5-x)=2 Bài 2 : Tính x³+y³ biết x-y=4 và xy=5
Bài 1:
$2x(x+3)+(2x+3)(5-x)=2$
$\Leftrightarrow 2x^2+6x+(10x-2x^2+15-3x)=2$
$\Leftrightarrow 2x^2+6x+7x-2x^2+15=2$
$\Leftrightarrow 13x+15=2$
$\Leftrightarrow 13x=2-15=-13$
$\Leftrightarrow x=-13:13=-1$
Bài 2:
$x-y=4\Rightarrow x=y+4$. Thay vào $xy=5$ thì:
$(y+4)y=5$
$\Leftrightarrow y^2+4y-5=0$
$\Leftrightarrow (y-1)(y+5)=0$
$\Leftrightarrow y=1$ hoặc $y=-5$
Nếu $y=1$ thì $x=y+4=5$. Khi đó $x^3+y^3=5^3+1^3=126$
Nếu $y=-5$ thì $x=y+4=-1$. Khi đó: $x^3+y^3=(-1)^3+(-5)^3=-126$
a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)
Thay x-y=7 vào biểu thức (1), ta được:
\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)
Vậy: Khi x-y=7 thì A=100
b) Ta có: \(x+y=2\)
\(\Leftrightarrow\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy+10=4\)
\(\Leftrightarrow2xy=-6\)
\(\Leftrightarrow xy=-3\)
Ta có: \(A=x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)
Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:
\(A=2\cdot\left(10+3\right)=2\cdot13=26\)
Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26
\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)
\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)
Bài 4:Tìm x, biết:
1/ (x-1)(x^2+x+1)-x^3-6x=11
2/ 16x^2-(3x-4)^2=0
3/ x^3-x^2+3-3x=0
4/ x-1/x+2=x+2/x+1
5/1/x+2/x+1=0
6/ 9-x^2/x : (x-3)=1
Bài 4:
1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)
=>\(x^3-1-x^3-6x=11\)
=>-6x-1=11
=>-6x=11+1=12
=>\(x=\dfrac{12}{-6}=-2\)
2: \(16x^2-\left(3x-4\right)^2=0\)
=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)
=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)
=>(x+4)(7x-4)=0
=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)
3: \(x^3-x^2-3x+3=0\)
=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)
=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-3\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))
=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)
=>\(x^2+4x+4=x^2-1\)
=>4x+4=-1
=>4x=-5
=>\(x=-\dfrac{5}{4}\left(nhận\right)\)
5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)
=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)
=>3x+1=0
=>3x=-1
=>\(x=-\dfrac{1}{3}\left(nhận\right)\)
6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)
\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)
=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-x-3}{x}=1\)
=>-x-3=x
=>-2x=3
=>\(x=-\dfrac{3}{2}\left(nhận\right)\)
Tính giá trị của biểu thức sau, biết x+y=0
M=x^4-xy^3+x^3y-y^4-1=0
tính giá trị của biểu thức sau, biết x+y+1=0
D=X^2(x+y)-y^2 (x+y)+x^2-y^2+2(x+y)+3
Cho hàm số sau y = 3 x x^2 - 2x + 1
a; Tính y biết giá trị tuyện đối của x = 1/3
b Tính x biết y = 1