Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 15:44

\(A=\dfrac{x^2-4x+1}{x^2}=\dfrac{1}{x^2}-\dfrac{4}{x}+1=\left(\dfrac{1}{x^2}-\dfrac{4}{x}+4\right)-3=\left(\dfrac{1}{x}-2\right)^2-3\ge-3\)

\(A_{min}=-3\) khi \(x=\dfrac{1}{2}\)

Nguyễn Kim Chi
Xem chi tiết
Lấp La Lấp Lánh
22 tháng 9 2021 lúc 14:29

\(A=\left|3-x\right|+8\ge8\)

\(minA=8\Leftrightarrow x=3\)

\(B=\left|x+2\right|-4\ge-4\)

\(minB=-4\Leftrightarrow x=-2\)

Nguyễn Lê Phước Thịnh
22 tháng 9 2021 lúc 14:35

\(A=\left|3-x\right|+8\ge8\forall x\)

Dấu '=' xảy ra khi x=3

\(B=\left|x+2\right|-4\ge-4\forall x\)

Dấu '=' xảy ra khi x=-2

Me me biggg boy
Xem chi tiết
Me me biggg boy
Xem chi tiết
Kagamine Rin
Xem chi tiết
Trà My
21 tháng 7 2017 lúc 23:26

\(x^2\ge0\Rightarrow x^2+1\ge1>0\Rightarrow\left|x^2+1\right|=x^2+1\)

<=>\(x^2+1-\left|x^2-4\right|=1\Leftrightarrow x^2-\left|x^2-4\right|=0\Leftrightarrow x^2=\left|x^2-4\right|\)

+)\(x^2-4>0\Leftrightarrow x^2>4\Leftrightarrow x< -2;x>2\)

<=>\(x^2-4=x^2\Leftrightarrow0=4\) vô lý

+)\(x^2-4\le0\Leftrightarrow x^2\le4\Leftrightarrow-2\le x\le2\)

<=>\(4-x^2=x^2\Leftrightarrow4=2x^2\Leftrightarrow x^2=2\Leftrightarrow\orbr{\begin{cases}x=-\sqrt{2}\\x=\sqrt{2}\end{cases}}\)(nhận)

Vậy ...

Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 20:23

a: \(=\sqrt{x-3-2\sqrt{x-3}+3}\)

\(=\sqrt{x-3-2\sqrt{x-3}+1+2}=\sqrt{\left(\sqrt{x-3}-1\right)^2+2}>=\sqrt{2}\)

Dấu = xảy ra khi x-3=1

=>x=4

 

duong duong
Xem chi tiết
Minh Hiếu
18 tháng 9 2021 lúc 5:52

a) Vì \(\sqrt{x-5}\) ≥0

⇒ \(\sqrt{x-5}+7\) ≥ 7

Min A=7⇔x-5=0

             ⇔x=5

Minh Hiếu
18 tháng 9 2021 lúc 5:55

b) Vì \(\sqrt{3x-5}\) ≥0

⇒ 8-\(\sqrt{3x-5}\) ≤8

Max=8⇔3x-5\(=\)0

           ⇔\(x=\dfrac{5}{3}\)

spider
Xem chi tiết
An Thy
16 tháng 7 2021 lúc 9:55

2. \(P=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}\) (BĐT Cauchy-Schwarz) 

\(=\dfrac{1}{2}\)

\(\Rightarrow P_{min}=\dfrac{1}{2}\) khi \(\dfrac{x}{y+z}=\dfrac{y}{z+x}=\dfrac{z}{x+y}\Rightarrow x=y=z=\dfrac{1}{3}\)

missing you =
16 tháng 7 2021 lúc 9:59

1, đặt \(x^2+x=t\)

=>\(A=t\left(t-4\right)=t^2-4t=t^2-4t+4-4\)

\(=>A=\left(t-2\right)^2-4\ge-4\) dấu"=' xảy ra\(t=2\)

\(=>x^2+x=2< =>x^2+x-2=0\)

\(< =>x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{9}{4}=0\)

\(< =>\left(x+\dfrac{1}{2}\right)^2-\left(\dfrac{3}{2}\right)^2=0< =>\left(x-1\right)\left(x+2\right)=0\)

\(=>\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\) vậy Amin=-4<=>\(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

B2

\(=>P=\dfrac{x^2}{y+z}+\dfrac{y+z}{4}+\dfrac{y^2}{x+z}+\dfrac{x+z}{4}+\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\)

\(-\left(\dfrac{y+z+x+z+x+y}{4}\right)\)

áp dụng BDT AM-GM

\(=>\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2}{4}}=x^{ }\left(1\right)\)

\(\)tương tự \(=>\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y\left(2\right)\)

\(=>\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\left(3\right)\)

(1)(2)(3) \(=>P\ge x+y+z-\dfrac{1}{2}.x+y+z=1-\dfrac{1}{2}=\dfrac{1}{2}\)

dấu"=" xảy ra<=>x=y=z=1/3

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 1 2021 lúc 19:53

a. ĐKXĐ: \(x\ge-1\)

\(y=\sqrt{x^3+1+2\sqrt{x^3+1}+1}+\sqrt{x^3+1-2\sqrt{x^3+1}+1}\)

\(=\sqrt{\left(\sqrt{x^3+1}+1\right)^2}+\sqrt{\left(\sqrt{x^3+1}-1\right)^2}\)

\(=\left|\sqrt{x^3+1}+1\right|+\left|1-\sqrt{x^3+1}\right|\ge\left|\sqrt{x^3+1}+1+1-\sqrt{x^3+1}\right|=2\)

b.

\(f\left(x\right)=\dfrac{x-1}{2}+\dfrac{2}{x-1}+\dfrac{1}{2}\ge2\sqrt{\dfrac{2\left(x-1\right)}{2\left(x-1\right)}}+\dfrac{1}{2}=\dfrac{5}{2}\)

c.

\(y=\dfrac{x-2018+1}{\sqrt{x-2018}}=\sqrt{x-2018}+\dfrac{1}{\sqrt{x-2018}}\ge2\sqrt{\dfrac{\sqrt{x-2018}}{\sqrt{x-2018}}}=2\)