Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 3 2019 lúc 17:46

Chọn D.

Nguyễn Hải Vân
Xem chi tiết
Nguyễn long
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 7:43

Trước hết ta xét: \(g\left(x\right)=\dfrac{1}{x+a}=\left(x+a\right)^{-1}\) với a là hằng số bất kì

\(g'\left(x\right)=-1.\left(x+a\right)^{-2}=\left(-1\right)^1.1!.\left(x+a\right)^{-\left(1+1\right)}\) 

\(g''\left(x\right)=-1.\left(-2\right).\left(x+a\right)^{-3}=\left(-1\right)^2.2!.\left(x+a\right)^{-\left(2+1\right)}\)

Từ đó ta dễ dàng tổng quát được:

 \(g^{\left(n\right)}\left(x\right)=\left(-1\right)^n.n!.\left(x+a\right)^{-\left(n+1\right)}=\dfrac{\left(-1\right)^n.n!}{\left(x+a\right)^{n+1}}\)

Xét: \(f\left(x\right)=\dfrac{x^2+1}{x\left(x-2\right)\left(x+2\right)}=-\dfrac{1}{4}.\left(\dfrac{1}{x}\right)+\dfrac{5}{8}\left(\dfrac{1}{x+2}\right)+\dfrac{5}{8}\left(\dfrac{1}{x-2}\right)\)

Áp dụng công thức trên ta được:

\(f^{\left(30\right)}\left(1\right)=\dfrac{1}{4}.\dfrac{\left(-1\right)^{30}.30!}{1^{31}}+\dfrac{5}{8}.\dfrac{\left(-1\right)^{30}.30!}{\left(1+2\right)^{31}}+\dfrac{5}{8}.\dfrac{\left(-1\right)^{30}.30!}{\left(1-2\right)^{31}}\)

Bạn tự rút gọn kết quả nhé

Nguyễn Việt Lâm
14 tháng 1 2021 lúc 7:13

\(f\left(x\right)=\dfrac{x^2+1}{x^3}-4x\) hay \(f\left(x\right)=\dfrac{x^2+1}{x^3-4x}\) bạn?

títtt
Xem chi tiết
Nguyễn Đức Trí
15 tháng 9 2023 lúc 19:47

1) \(f\left(x\right)=2x-5\)

\(f'\left(x\right)=2\)

\(\Rightarrow f'\left(4\right)=2\)

2) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)

\(\Rightarrow y'=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)

3) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)

\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1.\left(x+9\right)}{\left(x-3\right)^2}+\dfrac{4}{2\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{12}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=2\left[\dfrac{6}{\left(x-3\right)^2}+\dfrac{1}{\sqrt[]{x}}\right]\)

\(\Rightarrow f'\left(1\right)=2\left[\dfrac{6}{\left(1-3\right)^2}+\dfrac{1}{\sqrt[]{1}}\right]=2\left(\dfrac{3}{2}+1\right)=2.\dfrac{5}{2}=5\)

Nguyễn Lê Phước Thịnh
15 tháng 9 2023 lúc 19:42

loading...  loading...  

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 3 2017 lúc 18:23

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:25

a)     Hàm số f(x) là hàm hợp của hàm số \(y = {a^x}\)

b)    \(f'(x) = \left( {{2^{3x + 2}}} \right)' = \left( {3x + 2} \right)'{.2^{3x + 2}}.\ln 2 = {3.2^{3x + 2}}.\ln 2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 7 2019 lúc 4:44

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 11 2017 lúc 5:22

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 12 2017 lúc 11:45

Chọn D

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 2:19

\(f'\left(x\right)=\dfrac{1}{x\cdot ln10}\)

=>\(f'\left(\dfrac{1}{2}\right)=\dfrac{1}{\dfrac{1}{2}\cdot ln10}=\dfrac{2}{ln10}\)