Tìm các giá trị của m để phương trình e x = x + m có nghiệm x ∈ - 1 ; 1
Cho phương trình 2x2 + 2(m+1)x +m2+4m + 3 =0
1/Tìm giá trị của m để phương trình nhận x=1 làm nghiệm.Với m vừa tìm đc ,hãy tìm nghiệm còn lại của phương trình
2/Tìm các giá trị của m để phương trình có hai nghiệm trái dấu
3/tìm các giá trị của m để phương trình có hai nghiệm x1, x2
4/ tìm m để phương trình có hai nghiệm x1,x2 sao cho biểu thức A=|x1x2 - 2(x1x2 ) đạt giá trịn lớn nhất
Cho phương trình: \(x^2-2\left(3m+2\right)x+2m^2-3m+5=0\)
a. Giải phương trình với m = -2
b. Tìm các giá trị của m để phương trình trên có một trong các nghiệm bằng 1
c. Tìm các giá trị của m để phương trình trên có nghiệm kép.
cho phương trình 2x2 +2( m+1) x +m2 +4m +3=0 , với m là tham số
a) giải phương trình khi m=-3
b)tìm giá trị của m để phương trình nhan x=1 là nghiệm với m tìm được hãy tìm nghiệm còn lại của phương trình
c)tìm giá trị của m để phương trình có hai nghiệm trái dấu
d) tìm giá trị của m để phương trình có hai nghiệm x1 ,x2
e) tìm m để pt có hai nghiệm x1 ,x2 sao cho biểu thức sau đạt già trị lớn nhất A=/x1x2 -2(x1 +x2 )/
cho phương trình : x2 + 2(m-1)x - m + 1 = 0
a) tìm các giá trị của m để phương trình có một nghiệm < 1 và 1 nghiệm > 1
b) tìm các giá trị của m để phương trình có hai nghiệm phân biệt < 2
cho phương trình \(x^2-2\left(m+2\right)x+m+1=0\)
a, giải phương trình khi m = \(\dfrac{1}{2}\)
b, tìm các giá trị của m để phương trình có 2 nghiệm trái dấu
c, gọi \(x_1;x_2\) là 2 nghiệm của phương trình. Tìm giá trị của m để \(x_1\left(1-2x_2\right)+x_2\left(1-2x_2\right)=m^2\)
a. Bạn tự giải
b. Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow m+1< 0\Rightarrow m< -1\)
c. Đề bài có vẻ ko chính xác, sửa lại ngoặc sau thành \(x_2\left(1-2x_1\right)...\)
\(\Delta'=\left(m+2\right)^2-4\left(m+1\right)=m^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Pt đã cho luôn luôn có nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)
\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)
\(\Leftrightarrow2\left(m+2\right)-4\left(m+1\right)=m^2\)
\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
Tìm các giá trị của m để phương trình e x = x + m có nghiệm x ∈ - 1 ; 1
A. e - 1 e ≤ m ≤ e - 1
B. e - 1 e ≤ m ≤ 1
C. 1 ≤ m ≤ e - 1
D. 1 ≤ m ≤ e
Cho phương trình (2m−5)x2 −2(m−1)x+3=0 (1); với m là tham số thực
1) Tìm m để phương trình (1) có một nghiệm bằng 2, tìm nghiệm còn lại.
3) Tìm giá trị của m để phương trình đã cho có nghiệm
4) Xác định các giá trị nguyên của để phương trình đã cho có hai nghiệm phân biệt đều nguyên dương
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
Các bạn giúp mình giải mấy bài toán khó lớp 9 này với! Thank nhiều!?
1)Viết đa thức f(x)= 3x^2-2x+4 theo lũy thừa giảm dần của (x-1) 2)Cho phương trình: x^2-2(m+1)x-3m^2 -2m-1=0 a- Chứng minh rằng: phương trình luôn có 2 nghiệm trái dấu với mọi giá trị của m b- Tìm các giá trị của m để phương trình có nghiệm x=-1 c- Tìm các giá trị của m để phương trình có 2 nghiệm x1,x2 thỏa... hiển thị thêm
Cho hệ phương trình ( x+y = 2 mx−y = m với m là tham số.
a) Giải hệ phương trình khi m = −2.
b) Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x; y) sao cho 3x−y = −10.
c) Tìm giá trị nguyên của m để hệ phương trình có nghiệm (x; y) mà x, y là những số nguyên
a) Với m = -2
=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy S = {0; 2}
b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\)
=> x + mx = 2 + m
<=> x(m + 1) = 2 + m
Để hpt có nghiệm duy nhất <=> \(m\ne-1\)
<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)
=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)
Mà 3x - y = -10
=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)
<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)
<=> 6m = -8
<=> m = -4/3
c) Để hpt có nghiệm <=> m \(\ne\)-1
Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)
Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)
Để x nguyên <=> 1 \(⋮\)m + 1
<=> m +1 \(\in\)Ư(1) = {1; -1}
<=> m \(\in\) {0; -2}
Thay vào y :
với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)
m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)
Vậy ....