Số thực m nhỏ nhất để phương trình 8 x + 3 x . 4 x + ( 3 x 2 + 1 ) 2 x = ( m 3 - 1 ) x 3 + ( m - 1 ) x có nghiệm dương là a+e lnb, với a,b là các số nguyên. Giá trị của biểu thức a+b bằng
A. 7.
B. 4.
C. 5.
D. 3.
Cho elip (E) có phương trình x²/16 + y²/9 =1. Viết phương trình đường thẳng (d) đi qua M(1;2) và cắt (E) tại A, B sao cho M là trung điểm AB
Cho Elip ( E ) : x 2 1 + y 2 1 / 4 = 1 Gọi M(a,b) là điểm thuộc (E) sao cho | a + b| đạt giá trị lớn nhất. Giá trị a 4 + b 2 là
A. 69/100
B. 25/256
C. 17/20
D. 6/25
Cho hàm số \(y=x^3+3x^2+mx+1\)\(\left(C_m\right)\)
Tìm m để \(\left(C_m\right)\) cắt đường thẳng y=1 tại 3 điểm phân biệt C (0;1), D, E. Tìm m để các tiếp tuyến tại D, E vuông góc với nhau
Cho Elip E : x 2 16 + y 2 12 = 1 và điểm M nằm trên (E). Nếu điểm M có hoành độ bằng 1 thì các khoảng cách từ M tới 2 tiêu điểm của (E) bằng:
A. 3,5 và 4,5
B. 4 ± 2
C. 3 và 5
D. 4 ± 2 2
Cho hàm số f x = e x 2 + 1 e x - e - x . Có bao nhiêu số nguyên dương m thỏa mãn bất phương trình f m - 7 + f 12 m + 1 .
A. 4
B. 6.
C. 3.
D. 5.
Cho bất phương trình 9 x + ( m - 1 ) 3 x + m > 0 ( 1 ) . Tìm tất cả các giá trị của tham số m để bất phương trình (1) nghiệm đúng ∀ x > 1
A. m ≥ - 3 2
B. m > - 3 2
C. m > 3 + 2 2
D. m ≥ 3 + 2 2
Cho phương trình ( x + x + 1 ) ( m x + 1 + 1 x + 16 x 2 + x 4 ) = 1 với m là tham số thực. Tìm số các giá trị nguyên của m để phương trình có hai nghiệm thực phân biệt
A. 3.
B. 4.
C. 5.
D. 6
Cho hàm số f(x) có đạo hàm f'(x) liên tục trên đoạn [1;e] thỏa mãn f 1 = 1 2 và x . f ' x = x f 2 x - 3 f x + 1 x , ∀ x ∈ 1 ; e . Giá trị của f(e) bằng
A. 3 2 e
B. 4 3 e
C. 3 4 e
D. 2 3 e
Cho bất phương trình 3 + x + 1 - x ≤ m + 1 - x 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để bất phương trình có nghiệm thực.
A. m ≥ 25 4
B. m ≥ 4
C. m ≥ 6
D. m ≥ 7