Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Thị Phương Dung
Xem chi tiết
trần trác tuyền
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 2 2020 lúc 14:45

\(\left\{{}\begin{matrix}4x^2+y^2\left(1-4xy\right)=0\\4x^2+2y^2-4xy-1=0\end{matrix}\right.\)

\(\Rightarrow y^2\left(1-4xy\right)-2y^2+4xy+1=0\)

\(\Leftrightarrow-y^2\left(4xy+1\right)+4xy+1=0\)

\(\Leftrightarrow\left(4xy+1\right)\left(1-y^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4xy=-1\\y^2=1\end{matrix}\right.\)

Bạn tự giải nốt

Khách vãng lai đã xóa
Blue Moon
Xem chi tiết
an danh
19 tháng 12 2018 lúc 19:56

lai hoi bo kien thuc rong ak

Nguyen Minh Anh
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 10 2021 lúc 8:21

\(\left(2x+y\right)^2=4x^2+4xy+y^2\)

nthv_.
15 tháng 10 2021 lúc 8:21

\(4x^2+4xy+y^2\)

Đan Khánh
15 tháng 10 2021 lúc 8:23

Đáp án là: 4x^2 + 4xy + y^2

Bạn có ghi đáp án để chọn không vậy

Đồng Lâm Bảo Ngọc
Xem chi tiết
Nguyễn Huy Tú
26 tháng 6 2021 lúc 20:20

a,sửa đề :  \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x^2-4}\right)\)

\(=\left(\frac{1}{\left(x+2\right)^2}-\frac{1}{\left(x-2\right)^2}\right):\left(\frac{x-2+1}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\left(\frac{x^2-4x+4-x^2-4x-4}{\left(x+2\right)^2\left(x-2\right)^2}\right):\left(\frac{x-1}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\frac{-8x\left(x+2\right)\left(x-2\right)}{\left(x+2\right)^2\left(x-2\right)^2\left(x-1\right)}=\frac{-8x}{\left(x-1\right)\left(x^2-4\right)}\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
26 tháng 6 2021 lúc 20:27

b, \(\left(\frac{2x}{2x-y}-\frac{4x^2}{4x^2+4xy+y^2}\right):\left(\frac{2x}{4x^2-y^2}+\frac{1}{y-2x}\right)\)

\(=\left(\frac{2x}{2x-y}-\frac{4x^2}{\left(2x+y\right)^2}\right):\left(\frac{2x}{\left(2x-y\right)\left(2x+y\right)}-\frac{1}{2x-y}\right)\)

\(=\left(\frac{2x\left(2x+y\right)^2-4x^2\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{2x-\left(2x+y\right)}{\left(2x-y\right)\left(2x+y\right)}\right)\)

\(=\left(\frac{8x^3+8x^2y+2xy^2-8x^3+4x^2y}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{-y}{\left(2x-y\right)\left(2x+y\right)}\right)\)

\(=-\left(\frac{12x^2y+xy^2}{2x+y}\right)=\frac{-12x^2y-xy^2}{2x+y}\)

Khách vãng lai đã xóa
Giang Huong
Xem chi tiết
Lấp La Lấp Lánh
6 tháng 10 2021 lúc 9:32

\(=\left(4x^2-4xy+y^2\right)-\left(25a^2-10a+1\right)=\left(2x-y\right)^2-\left(5a-1\right)^2\)

\(=\left(2x-y-5a+1\right)\left(2x-y+5a-1\right)\)

Nguyễn Hoàng Minh
6 tháng 10 2021 lúc 9:33

\(=\left(4x^2-4xy+y^2\right)-\left(25a^2-10a+1\right)\\ =\left(2x-y\right)^2-\left(5a-1\right)^2\\ =\left(2x-y-5a+1\right)\left(2x-y+5a-1\right)\)

Nguyễn Phúc Lộc
Xem chi tiết
Đức Anh Ramsay
Xem chi tiết
Minh Nhân
17 tháng 2 2021 lúc 13:03

\(a.\)

\(\dfrac{16x^2-1}{16x^2-8x+1}\\ =\dfrac{\left(4x\right)^2-1}{\left(4x-1\right)^2}\\ =\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\\ =\dfrac{4x+1}{4x-1}\)

\(b.\)

\(\dfrac{4x^2-4xy+y^2}{-\left(4x^2-y^2\right)}\\ =-\dfrac{\left(2x-y\right)^2}{\left(2x-y\right)\left(2x+y\right)}\\ =\dfrac{-\left(2x-y\right)}{2x+y}\\ =\dfrac{y-2x}{y+2x}\)

Nguyễn Lê Phước Thịnh
17 tháng 2 2021 lúc 13:04

a) Ta có: \(\dfrac{16x^2-1}{16x^2-8x+1}\)

\(=\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\)

\(=\dfrac{4x+1}{4x-1}\)

b) Ta có: \(\dfrac{4x^2-4xy+y^2}{y^2-4x^2}\)

\(=\dfrac{\left(2x-y\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)

\(=\dfrac{\left(y-2x\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)

\(=\dfrac{y-2x}{y+2x}\)

Scorpio
Xem chi tiết