3\(\sqrt[]{\text{x}}-\)11=-9
\(\text{3}\sqrt{\text{x}-\text{11}=\text{-9}}\)
Sửa: \(3\sqrt{x-11}=-9\Leftrightarrow\sqrt{x-11}=-3\Leftrightarrow x\in\varnothing\)
Mong mng giúp ạ
câu1 rút gọn
a)\(\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
b)\(\dfrac{x^2+2\sqrt{2}x+2}{x^2-2}\left(x\ne\sqrt{2},x\ne-\sqrt{2}\right)\)
c)\(\sqrt{9\text{x}^2}-2\text{x}\left(x< 0\right)\)
d)\(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)
e)\(\dfrac{x^2-5}{x+\sqrt{5}}\left(x\ne-\sqrt{5}\right)\)
\(a,\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\sqrt{3^2}-2\sqrt{3}+1}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\left|\sqrt{3}-1\right|-\sqrt{3}=-1\)
\(b,\dfrac{x^2+2\sqrt{2}x+2}{x^2-2}\left(dk:x\ne\pm\sqrt{2}\right)\\ =\dfrac{x^2+2\sqrt{2}x+\sqrt{2^2}}{x^2-\sqrt{2^2}}\\ =\dfrac{\left(x+\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}\\ =\dfrac{x+\sqrt{2}}{x-\sqrt{2}}\)
\(c,\sqrt{9x^2}-2x\left(dk:x< 0\right)\\ =\sqrt{3^2}.\sqrt{x^2}-2x\\ =3\left|x\right|-2x\\ =-3x-2x\\ =-5x\)
\(d,\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\\ =\sqrt{\sqrt{2^2}+2.3\sqrt{2}+3^2}-3+\sqrt{2}\\ =\sqrt{\left(\sqrt{2}+3\right)^2}-3+\sqrt{2}\\ =\sqrt{2}+3-3+\sqrt{2}\\ =2\sqrt{2}\)
\(e,\dfrac{x^2-5}{x+\sqrt{5}}\left(dk:x\ne-\sqrt{5}\right)\\ =\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}\\ =x-\sqrt{5}\)
Rút gọn các biểu thức sau:
9, A = \(\sqrt{4+\sqrt{15}}-\sqrt{7-3\sqrt{5}}\)
10, A = \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
11, A = \(\text{}\text{}\text{}\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
12, A = \(\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{6-3\sqrt{3}}\)
13, A = \(\sqrt{9-4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
9: \(A=\dfrac{\sqrt{8+2\sqrt{15}}-\sqrt{14-6\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\dfrac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)
10: \(A=\dfrac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
11: \(A=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=-\dfrac{2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)
12: \(B=\left(3+\sqrt{3}\right)\sqrt{12-6\sqrt{3}}\)
\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)\)
=9-3=6
13: \(A=\sqrt{5}-2-\left(3-\sqrt{5}\right)\)
\(=\sqrt{5}-2-3+\sqrt{5}=2\sqrt{5}-5\)
giải giúp mình mấy phương trình này với
a, \(16x^4+5=6\sqrt[3]{4x^3+x}\)
b,\(\sqrt{\text{-}4x^4y^2+16x^2y+9}-\sqrt{x^2y^2\text{-}2y^2}=2\left(x^2+\frac{1}{x^2}\right)\)
c,\(\sqrt{x^2+2y^2\text{-}6x+4y+11}+\sqrt{x^2+3y^2+2x+6y+4}=4\)
d, \(2\sqrt[4]{27x^2+24x+\frac{28}{3}}=1+\sqrt{\frac{27}{2}x+6}\)
e, \(\frac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
a)\(\left(\dfrac{5}{9}-\dfrac{\sqrt{9}}{12}\right):\dfrac{3}{4}+\dfrac{11}{3}:\dfrac{3}{4}\) b)\(\left(0,\left(3\right)+\dfrac{\text{|}-2\text{|}}{3}\right):\dfrac{\sqrt{25}}{4}-\left(2^3+3^2\right)^0\)
a: \(\left(\dfrac{5}{9}-\dfrac{\sqrt{9}}{12}\right):\dfrac{3}{4}+\dfrac{11}{3}:\dfrac{3}{4}\)
\(=\left(\dfrac{5}{9}-\dfrac{3}{12}\right)\cdot\dfrac{4}{3}+\dfrac{11}{3}\cdot\dfrac{4}{3}\)
\(=\left(\dfrac{5}{9}-\dfrac{1}{4}+\dfrac{11}{3}\right)\cdot\dfrac{4}{3}\)
\(=\dfrac{20-9+132}{36}\cdot\dfrac{4}{3}\)
\(=\dfrac{143}{3}\cdot\dfrac{1}{9}=\dfrac{143}{27}\)
b: \(\left(0.\left(3\right)+\dfrac{\left|-2\right|}{3}\right):\dfrac{\sqrt{25}}{4}-\left(2^3+3^2\right)^0\)
\(=\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\cdot\dfrac{4}{5}-1\)
\(=\dfrac{4}{5}-1=-\dfrac{1}{5}\)
giải phương trình
\(\text{x}^2-4=3\sqrt{\text{x}^3-4\text{x}}\)
\(9\text{x}+17=6\sqrt{8\text{x}-1}+4\sqrt{\text{x}+3}\)
\(\sqrt{2\text{x}-1}+\text{x}=\sqrt{\text{x}}+\sqrt{\text{x}^2-\text{x}+1}\)
\(2\sqrt{\text{x}^2-\text{x}+1}+\sqrt{\text{x}^2+\text{x}+1}=\sqrt{\text{x}^4+\text{x}^2+1}+2\)
a: Đặt \(x^2-4=a\)
Pt sẽ là \(a=3\sqrt{xa}\)
\(\Rightarrow a^2=9xa\)
\(\Leftrightarrow a\left(a-9x\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-9x\right)=0\)
hay \(x\in\left\{2;-2;\dfrac{9+\sqrt{97}}{2};\dfrac{9-\sqrt{97}}{2}\right\}\)
d: Đặt \(\sqrt{x^2-x+1}=a;\sqrt{x^2+x+1}=b\)
Pt sẽ là 2a+b=ab+2
=>(b-2)(1-a)=0
=>b=2 và 1-a
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+1=4\\x^2-x+1=1\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Mk đag cần gấp mn giúp mk vs ạ !
Câu 1 Tìm x , biết
a)\(\sqrt{4\text{x}^2+4\text{x}+1}=6\)
b)\(\sqrt{4\text{x}^2-4\sqrt{7}x+7=\sqrt{7}}\)
c\(\sqrt{x^2+2\sqrt{3}x+3}=2\sqrt[]{3}\)
d)\(\sqrt{\left(x-3\right)^2}=9\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left(2x+1\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
c) \(PT\Leftrightarrow\sqrt{\left(x+\sqrt{3}\right)^2}=2\sqrt{3}\)
\(\Leftrightarrow\left|x+\sqrt{3}\right|=2\sqrt{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\sqrt{3}\\x+\sqrt{3}=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-3\sqrt{3}\end{matrix}\right.\)
d) \(pt\Leftrightarrow\left|x-3\right|=9\Leftrightarrow\left[{}\begin{matrix}x-3=-9\\x-3=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=12\end{matrix}\right.\)
tính: \(\text{[}\sqrt{2}-1\text{]}^2-\frac{3}{2}\cdot\sqrt{\text{[}-2\text{]}^2}+\frac{4\sqrt{2}}{5}+\sqrt{1\frac{11}{25}}\cdot\sqrt{2}\)
Chứng minh: \(\sqrt{x}\cdot\text{[}1-\sqrt{x}\text{]}\le\frac{1}{4}v\text{ới}x\ge0\)
TÍNH : \(\left(\sqrt{2}-1\right)^2-\frac{3}{2}\sqrt{\left(-2\right)^2}+\frac{4\sqrt{2}}{5}+\sqrt{1\frac{11}{25}}.\sqrt{2}\)
\(=\left(\sqrt{2}-1\right)^2-\frac{3}{2}.2+\frac{4\sqrt{2}}{5}+\sqrt{\frac{36}{25}}.\sqrt{2}\)
\(=3-2\sqrt{2}-3+\frac{4\sqrt{2}}{5}+\frac{6\sqrt{2}}{5}=\frac{10\sqrt{2}}{5}-2\sqrt{2}=2\sqrt{2}-2\sqrt{2}=0\)
CHỨNG MINH :
Ta có : \(\sqrt{x}\left(1-\sqrt{x}\right)=-x+\sqrt{x}=-\left[\left(\sqrt{x}\right)^2-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right]+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)với mọi \(x\ge0\)
Vậy ta có điều phải chứng minh.
Đề: Cho biểu thức
A=\(\frac{\text{15√x−11}}{x+2\sqrt{x}−3}-\frac{\text{3√x−2}}{1−\sqrt{x}}-\frac{3}{\text{√x+3}}\text{(x≥0;x≠1) }\)
a. Thu gọn biểu thức A
b. Tìm x nguyên để A nguyên
Đề có vấn đề theo tôi đề như sau :
\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}.\)
Rheo tôi đề như vậy
mong xem lại đề
a) \(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11+3x+7\sqrt{x}-6-3+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{23\sqrt{x}+3x-20}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
Góp ý
Bạn Nguyễn Văn Tuấn Anh sai rồi nha
bạn quy đông sai ở biểu thức cuối
P/s : mong bạn xem lại