Cho x 2 + y 2 = 26 và xy = 5, giá trị của x - y 2 là:
A. 4
B. 16
C. 21
D. 36
Cho x2+y2 = 26 và xy=5, giá trị của (x-y)2 là
Giải chi tiết ra giúp mình nhé
sai sai, nhìn nhầm đề
x2 + y2 = 26
=> (x - y)2 + 2xy = 26
=> (x -y)2 + 10 = 26
=> (x - y)2 = 26
ta có:(x-y)^2= x^2-2xy+y^2
=(x^2+y^2)-2xy (1)
thay x^2+y^2=26 và xy=5 vào(1) ta đc:
26-2.5=26-10=16
vậy (x-y)^2=16 tại x^2+y^2=26, xy=5
x2 + y2 = 2016
<=> (x + y)2 - 2xy = 2016
=> (x + y)2 = 2026
(x - y)2 = (x + y)2 - 4xy = 2026 - 20 = 2006
Giúp mình với!!!
Cho x2 + y2 = 26 và xy = 5
Tính giá trị của (x – y)2.
(x - y)2 = x2 - 2xy + y2
Thay x2 + y2 = 26 và xy = 5 vào, ta có:
x2 - 2xy + y2 = 26 - 2.5 = 26 - 10 = 16
Vậy (x - y)2 = 16
a) Tìm giá trị của x + y biết x - y = 2 , xy = 99 và y < 0
b) Giá trị của x + y biết x - y = 4 , xy = 5 và x < 0
HD:
Dễ thấy b = 1, d = 2, e = 4 đặt y = x2 – 2 suy ra y2 = x4 – 4x2 + 4
Biến đổi P(x) = x4 – 4x2 + 4 – x3 – 6x2 + 2x
= (x2 – 2)2 – x(x2 – 2) – 6x2
Từ đó Q(y) = y2 – xy – 6x2
Tìm m, n sao cho m.n = - 6x2 và m + n = - x chọn m = 2x, n = -3x
Ta có: Q(y) = y2 + 2xy – 3xy – 6x2
= y(y + 2x) – 3x(y + 2x)
= (y + 2x)(y – 3x)
Do đó: P(x) = (x2 + 2x – 2)(x2 – 3x – 2).
a/ tìm GT của x+y biết x-y=2; x.y=99 và y<0
Vì x-y=2 nên
\(\Leftrightarrow\)
\(\Leftrightarrow\)
\(\Leftrightarrow\)
\(\Leftrightarrow\)
\(\Leftrightarrow\) x+y=20 hoặc x+y=-20
mà y<0 nên x+y=20
tu x-y=4 suy ra y=x-4
thay vao xy=5suy ra x(x-4)=5
\(\Rightarrow\) x^2-4x+4=9
\(\Rightarrow\)(x-2)^2=9
\(\Rightarrow\) x-2=+-3
vi x<0 \(\Rightarrow\) x=-3+2=-1
\(\Rightarrow\)y=x-4=-1-4=-5
\(\Rightarrow\) x+y=-1+-5=-6
Cho xy=5 và xy2+x2y+x+y=12. khi đó giá trị của biểu thức x2+y2=?
\(xy^2+x^2y+x+y=12\)
\(xy\left(x+y\right)+\left(x+y\right)=12\)
\(\left(x+y\right)\left(xy+1\right)=12\)
\(\left(x+y\right)\left(5+1\right)=12\)
\(\Rightarrow x+y=2\)
ta có \(x^2+y^2=\left(x+y\right)^2-2xy=2^2-2.5=-6\)
Xét hai phân thức \(M = \dfrac{x}{y}\) và \(N = \dfrac{{{x^2} + x}}{{xy + y}}\)
a) Tính giá trị của các phân thức trên khi \(x = 3\), \(y = 2\) và khi \(x = - 1\), \(y = 5\).
Nêu nhận xét về giá trị của \(M\) và \(N\) khi cho \(x\) và \(y\) nhận những giá trị nào đó (\(y \ne 0\) và \(xy - y \ne 0\)).
b) Nhân tử thức của phân thức này với mẫu thức của phân thức kia, rồi so sánh hai đa thức nhận được.
a) Điều kiện xác định của phân thức \(M\): \(y \ne 0\)
Điều kiện xác định của phân thức \(N\): \(xy + y \ne 0\) hay \(xy \ne - y\)
Khi \(x = 3\), \(y = 2\) (thoả mãn điều kiện xác định), ta có:
\(M = \dfrac{3}{2}\)
\(N = \dfrac{{{3^2} + 3}}{{3.2 + 2}} = \dfrac{{9 + 3}}{{6 + 2}} = \dfrac{{12}}{8} = \dfrac{3}{2}\)
Vậy \(M = N = \dfrac{3}{2}\) khi \(x = 3\), \(y = 2\)
Khi \(x = - 1\), \(y = 5\) (thỏa mãn điều kiện xác định của \(M\)) ta có:
\(M = \dfrac{{ - 1}}{5}\)
Vậy \(M = \dfrac{{ - 1}}{5}\) khi \(x = - 1\), \(y = 5\)
Khi \(x = - 1\), \(y = 5\) thì \(xy + y = \left( { - 1} \right).5 + 5 = 0\) nên không thỏa mãn điều kiện xác định của \(N\). Vậy giá trị của phân thức \(N\) tại \(x = - 1\), \(y = 5\) không xác định.
b) Ta có:
\(x.\left( {xy + y} \right) = {x^2}y + xy\)
\(\left( {{x^2} + x} \right).y = {x^2}y + xy\)
Vậy \(x\left( {xy + y} \right) = \left( {{x^2} + x} \right)y\)
cho x+y=5 và xy=6. tính giá trị của biểu thức M= (x-y)2 - 2x - 2y
M=(x-y)²-2x-2y
= x²-2xy+y²-2(x+y)
= x²+2xy+y²-2(x+y)-4xy
= (x+y)²-2(x+y)-4xy
= 5²-2.5-4.6
= 25-10-24
= -9
Cho x2+y2=26 và xy=5, giá trị của (x-y)2=?
\(\left(x-y\right)^2=x^2-2xy+y^2=\left(x^2+y^2\right)-2xy\)
= \(26-2.5=26-10=16\)
cho biểu thức A=x^2/(y^2+xy) - y^2/(x^2-xy) - (x^2y^2)/xy
a.rút gọn a
b.cmr a không nhận giá trị nguyên với mọi giá trị nguyen của x,y thỏa mãn xy khác o và khác y,-y
Bạn phải ghi dấu ngoặc để mọi người hiểu chứ?
Tính Giá trị của biểu thức Q= x^2-xy+2y
a) Khi 2x= 5y và x+y=-21
b)khi x:2=y:5 và xy= 90
a) \(2x=5y\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{5+2}=\dfrac{-21}{7}=-3\)
Khi đó: \(\left\{{}\begin{matrix}\dfrac{x}{5}=-3\\\dfrac{y}{2}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3.5=-15\\y=-3.2=-6\end{matrix}\right.\)
\(\Rightarrow O=x^2-xy+2y=\left(-3\right)^2-\left(-15\right).\left(-6\right)+2.\left(-6\right)=9-90-12=-93\)
b)
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)
\(\Rightarrow2k.5k=90\\ \Leftrightarrow10k^2=90\\ \Leftrightarrow k^2=9\\ \Leftrightarrow\left[{}\begin{matrix}k=-3\\k=3\end{matrix}\right.\)
Nếu k = -3
\(\Rightarrow\left\{{}\begin{matrix}x=-3.2=-6\\y=-3.5=-15\end{matrix}\right.\)
\(\Rightarrow Q=-93\)
Nếu k = 3
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.5=15\end{matrix}\right.\)
\(\Rightarrow Q=6^2-6.15+2.15=-24\)
Cho A = \(\dfrac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}.\left[1:\dfrac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3-y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
B = x - y
Chứng minh đẳng thức A = B
Tính giá trị của A, B tại x = 0; y = 0 và giải thích vì sao A ≠ B
\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)
\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)
\(x=0;y=0\Leftrightarrow B=0\)
Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)
Vậy \(A\ne B\)