tìm max:
a)A=5-3(2x-1)^2
Bài 1: Tìm Max:
a) A= \(\dfrac{32}{x^2+2}\)
b) B= \(\dfrac{5}{2.\left(x+1\right)^2+3}\)
Lời giải:
a. Vì $x^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $x^2+2\geq 2$
$\Rightarrow A=\frac{32}{x^2+2}\leq \frac{32}{2}=16$
Vậy $A_{\max}=16$ khi $x^2=0\Leftrightarrow x=0$
b.
$(x+1)^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow 2(x+1)^2+3\geq 3$
$\Rightarrow B=\frac{5}{2(x+1)^2+3}\leq \frac{5}{3}$
Vậy $B_{\max}=\frac{5}{3}$ khi $x+1=0\Leftrightarrow x=-1$
Tìm Min, Max:
a, \(y=\left|Sinx\right|-\sqrt{Cosx}\)
b, \(y=12Sin^4x+Sin^2x+Cos4x+2Cos^2x\)
Tìm Max:
a) C= \(-\)\(\left|x+\dfrac{2}{5}\right|\)
b) D=\(\dfrac{5}{17}\)-\(\left|3x-2\right|\)
\(C=-\left|x+\dfrac{2}{5}\right|\le0\forall x\)
\("="\Leftrightarrow x=\dfrac{-2}{5}\\ C_{max}=0\)
\(D=\dfrac{5}{17}-\left|3x-2\right|\le\dfrac{5}{17}\)
\("="\Leftrightarrow x=\dfrac{2}{3}\\ D_{max}=\dfrac{5}{17}\)
Tìm max:
a) C= -\(\left|x+\dfrac{2}{5}\right|\)
b) D= \(\dfrac{5}{17}\)- \(\left|3x-2\right|\)
`a)C=-|x+2/5|`
`|x+2/5|>=0`
`<=>-|x+2/5|<=0`
`<=>C<=0`
Dấu "=" `<=>x=-2/5`
`b)D=5/17-|3x-2|`
`|3x-2|>=0`
`<=>5/17-|3x-2|<=5/17`
`<=>D<=5/17`
Dấu "=" `<=>x=2/3`.
Tìm Min, Max:
a, \(y=\sqrt{1-Cos\left(3x^2\right)}-2\)
b, \(y=2008Cos\sqrt{x-1}\)
a, \(cos3x^2\in\left[-1;1\right]\)
\(\Rightarrow1-cos3x^2\in\left[0;2\right]\)
\(\Rightarrow\sqrt{1-cos3x^2}\in\left[0;\sqrt{2}\right]\)
\(\Rightarrow y=\sqrt{1-cos3x^2}-2\in\left[-2;\sqrt{2}-2\right]\)
\(\Rightarrow y_{min}=-2\Leftrightarrow cos3x^2=1\Leftrightarrow3x^2=k2\pi\Leftrightarrow x=\pm\sqrt{\dfrac{k2\pi}{3}}\)
b, ĐK: \(x\ge1\)
\(cos\sqrt{x-1}\in\left[-1;1\right]\)
\(\Rightarrow y=2008cos\sqrt{x-1}\in\left[-2008;2008\right]\)
\(\Rightarrow y_{min}=-2008\Leftrightarrow cos\sqrt{x-1}=-1\Leftrightarrow\sqrt{x-1}=\pi+k2\pi\Leftrightarrow x=1+\left(\pi+k2\pi\right)^2\)
\(y_{max}=2008\Leftrightarrow cos\sqrt{x-1}=1\Leftrightarrow\sqrt{x-1}=k2\pi\Leftrightarrow x=1+4k^2\pi^2\)
Tìm Min hoặc Max:
A = \(\dfrac{2015}{18+12\left|x-6\right|}\)
B = \(\left|x+\dfrac{1}{3}\right|+\left|x-1\right|\)
Ta có: `A` lớn nhất `<=> (2015)/(18+12|x-6|)` nhỏ nhất.
`<=> 18+12|x-6|` nhỏ nhất.
`<=> 12|x-6|` nhỏ nhất, do `18` là hằng.
`<=> 12|x-6|=0`
`<=> x=6 => A=2015/18`
Vậy...
`b, B>=x+1/3+1-x`
`=4/3`.
Đẳng thức xảy ra `<=> x+1/3=1-x`
`<=> x=2/3`.
Vậy...
\(Cho:ab+bc+ca=abc.\)Tìm:\(Max:A=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)
\(ab+bc+ca=abc\rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Có \(4A=\Sigma\frac{4}{a+b}\le\Sigma\left(\frac{1}{a}+\frac{1}{b}\right)=2\Sigma\frac{1}{a}=2\)
\(\Rightarrow A\le2\)
"=" tại a=b=c=3
\(\hept{\begin{cases}a,b\ge0\\a+b=1\end{cases}.Min,Max:A=}\frac{a}{b+1}+\frac{b}{a+1}\)
Tìm Min, Max:
a, y= sin4x + cos4x - 3
b, y= 2sin\(\left(x-\dfrac{\pi}{4}\right)\) với x ϵ \(\left[0;\pi\right]\)
a) y=\(sin^4x+cos^4x-3=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-3=-2-\dfrac{1}{2}.sin^22x\)
Có \(0\le sin^22x\le1\)
\(\Leftrightarrow-2\ge y\ge-\dfrac{5}{2}\)
Min xảy ra \(\Leftrightarrow sin^22x=1\Leftrightarrow sin2x=1\Leftrightarrow2x=\dfrac{\Pi}{2}+k2\Pi\left(k\in Z\right)\)
\(\Leftrightarrow x=\dfrac{\Pi}{4}+k\Pi\left(k\in Z\right)\)
Max xảy ra \(\Leftrightarrow sin2x=0\Leftrightarrow2x=k\Pi\Leftrightarrow x=\dfrac{k\Pi}{2}\)
b, \(x\in\left[0;\pi\right]\)
=>\(sin\left(x-\dfrac{\pi}{4}\right)\in\left[-\dfrac{\sqrt{2}}{2};1\right]\)
\(\Leftrightarrow2sin\left(x-\dfrac{\pi}{4}\right)\in\left[-\sqrt{2};2\right]\)
\(\Rightarrow\left\{{}\begin{matrix}Miny=-\sqrt{2}\\Maxy=2\end{matrix}\right.\)
Min xảy ra \(\Leftrightarrow x=0\)
Max xảy ra \(\Leftrightarrow x=\dfrac{\pi}{2}\)
Tìm x
a) (12x-5)(3x-1)-(18x-1)(2x+3)=5
b) (x+2)(x-3)-(x-2)(x+5)=2(x+3)
c) (2x+3)(2x-1)-(2x+5)-(2x-3)=12