a, \(cos3x^2\in\left[-1;1\right]\)
\(\Rightarrow1-cos3x^2\in\left[0;2\right]\)
\(\Rightarrow\sqrt{1-cos3x^2}\in\left[0;\sqrt{2}\right]\)
\(\Rightarrow y=\sqrt{1-cos3x^2}-2\in\left[-2;\sqrt{2}-2\right]\)
\(\Rightarrow y_{min}=-2\Leftrightarrow cos3x^2=1\Leftrightarrow3x^2=k2\pi\Leftrightarrow x=\pm\sqrt{\dfrac{k2\pi}{3}}\)
b, ĐK: \(x\ge1\)
\(cos\sqrt{x-1}\in\left[-1;1\right]\)
\(\Rightarrow y=2008cos\sqrt{x-1}\in\left[-2008;2008\right]\)
\(\Rightarrow y_{min}=-2008\Leftrightarrow cos\sqrt{x-1}=-1\Leftrightarrow\sqrt{x-1}=\pi+k2\pi\Leftrightarrow x=1+\left(\pi+k2\pi\right)^2\)
\(y_{max}=2008\Leftrightarrow cos\sqrt{x-1}=1\Leftrightarrow\sqrt{x-1}=k2\pi\Leftrightarrow x=1+4k^2\pi^2\)