Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Linh Chi

Tìm Min, Max:

a, y= sin4x + cos4x - 3

b, y= 2sin\(\left(x-\dfrac{\pi}{4}\right)\) với x ϵ \(\left[0;\pi\right]\)

Lê Thị Thục Hiền
17 tháng 5 2021 lúc 9:31

a) y=\(sin^4x+cos^4x-3=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-3=-2-\dfrac{1}{2}.sin^22x\)

Có \(0\le sin^22x\le1\)

\(\Leftrightarrow-2\ge y\ge-\dfrac{5}{2}\)

Min xảy ra \(\Leftrightarrow sin^22x=1\Leftrightarrow sin2x=1\Leftrightarrow2x=\dfrac{\Pi}{2}+k2\Pi\left(k\in Z\right)\)

\(\Leftrightarrow x=\dfrac{\Pi}{4}+k\Pi\left(k\in Z\right)\)

Max xảy ra \(\Leftrightarrow sin2x=0\Leftrightarrow2x=k\Pi\Leftrightarrow x=\dfrac{k\Pi}{2}\)

 

Lê Thị Thục Hiền
17 tháng 5 2021 lúc 9:45

b, \(x\in\left[0;\pi\right]\)

x 0 π x-π /4 -π /4 3π /4 π /2 sin(x-π /4) -√2/2 1 √2/2

=>\(sin\left(x-\dfrac{\pi}{4}\right)\in\left[-\dfrac{\sqrt{2}}{2};1\right]\)

\(\Leftrightarrow2sin\left(x-\dfrac{\pi}{4}\right)\in\left[-\sqrt{2};2\right]\)

\(\Rightarrow\left\{{}\begin{matrix}Miny=-\sqrt{2}\\Maxy=2\end{matrix}\right.\)

Min xảy ra \(\Leftrightarrow x=0\)

Max xảy ra \(\Leftrightarrow x=\dfrac{\pi}{2}\)

 


Các câu hỏi tương tự
phamthiminhanh
Xem chi tiết
vvvvvvvv
Xem chi tiết
phamthiminhanh
Xem chi tiết
Nguyễn Sinh Hùng
Xem chi tiết
Nguyễn Sinh Hùng
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Mai Anh
Xem chi tiết
Nguyễn Sinh Hùng
Xem chi tiết
Kamato Heiji
Xem chi tiết