a: ĐKXĐ: \(x\in R\)
=>TXĐ: D=R
b; ĐKXĐ: 2x-4>=0
=>x>=2
TXĐ: D=[2;+\(\infty\))
c: ĐKXĐ: 1-cos^2x>=0
=>sin^2x>=0(luôn đúng)
a: ĐKXĐ: \(x\in R\)
=>TXĐ: D=R
b; ĐKXĐ: 2x-4>=0
=>x>=2
TXĐ: D=[2;+\(\infty\))
c: ĐKXĐ: 1-cos^2x>=0
=>sin^2x>=0(luôn đúng)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) \(y=f\left(x\right)=\dfrac{4}{\sqrt{5-2\cos^2x\sin^2x}}\)
b)\(y=f\left(x\right)=3\sin^2x+5\cos^2x-4\cos2x-2\)
c)\(y=f\left(x\right)=\sin^6x+\cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
1. Tìm m để PT có nghiệm:
a) \(\sqrt{3}\cos^2x+\dfrac{1}{2}\sin2x=m\)
b) \(3\sin^2x-2\sin x\cos x+m=0\)
c) \(\sin^2x+2\left(m-1\right)\sin x\cos x-\left(m+1\right)\cos^2x=m\)
1. Tìm m để PT có nghiệm:
a) \(\sqrt{3}\cos^2x+\dfrac{1}{2}\sin2x=m\)
b) \(3\sin^2x-2\sin x\cos x+m=0\)
c) \(^{ }\sin^2x+2\left(m-1\right)\sin x\cos x-\left(m+1\right)\cos^2x=m\)
3. Tìm GTLN, GTNN:
a) \(y=2\sin^2x+3\sin x\cos x-2\cos^2x+5\)
b) \(y=\dfrac{3\sin x-\cos x+1}{\sin x-2\cos x+4}\)
c) \(y=\dfrac{2\left(x^2+6xy\right)}{1+2xy+y^2}\) biết x, y thay đổi thỏa mãn \(x^2+y^2=1\)
tìm tập xác định của hàm số lượng giác sau
a)\(y=\dfrac{tan\left(2x-\dfrac{\pi}{4}\right)}{\sqrt{1-sin\left(x-\dfrac{\pi}{8}\right)}}\)
b)\(y=\dfrac{tan\left(x-\dfrac{\pi}{4}\right)}{1-cos\left(x+\dfrac{\pi}{3}\right)}\)
c)\(y=\dfrac{3}{cosx-cos3x}\)
d)\(y=\dfrac{4}{sin^2x-cos^2x}\)
e)\(y=\dfrac{1+cot\left(\dfrac{\pi}{3}+x\right)}{tan^2\left(3x-\dfrac{\pi}{4}\right)}\)
Xét tính chẵn, lẻ của các hàm số
1,\(y=cosx+sin^2x\)
2,\(y=sinx+cosx\)
3,\(y=tanx+2sinx\)
4,\(y=tan2x-sin3x\)
5,\(sin2x+cosx\)
6,\(y=cosx.sin^2x-tan^2x\)
7,\(y=cos\left(x-\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{4}\right)\)
8,\(y=\dfrac{2+cosx}{1+sin^2x}\)
9,\(y=\left|2+sinx\right|+\left|2-sinx\right|\)
Giải PT
a) \(\left|\sin x-\cos x\right|+\left|\sin x+\cos x\right|=2\)
b) \(\tan x-3\cot x=4\left(\sin x+\sqrt{3}\cos x\right)\)
c) \(2\sin^2x-2\sqrt{2}\sin x+3\tan^22x-2\sqrt{3}\tan2x+2=0\)
1) sin2x + 2cosx = 0
2) sin(2x -10*) = \(\dfrac{1}{2}\) (-120* <x< 90*)
3) cos(2x+10*)= \(\dfrac{\sqrt{2}}{2}\)(-180*<x<180*)
4) \(\sin^2\left(5x+\dfrac{2\pi}{5}\right)-\cos^2\)(\(\dfrac{x}{4}-\pi\)) =0
a/\(\sin3x+\cos2x=1+2\sin x\cos2x\)
b/\(\sin^3x+\cos^3x=2\left(\sin^5x+\cos^5x\right)\)
c/\(\dfrac{\tan x}{\sin x}-\dfrac{\sin x}{\cos x}=\dfrac{\sqrt{2}}{2}\)
d/\(\dfrac{\cos x\left(\cos x+2\sin x\right)+3\sin x\left(\sin x+\sqrt{2}\right)}{\sin2x-1}=1\)
e/\(\sin^2x+\sin^23x-2\cos^22x=0\)
f/\(\dfrac{\tan x-\sin x}{\sin^3x}=\dfrac{1}{\cos x}\)
g/\(\sin2x\left(\cos x+\tan2x\right)=4\cos^2x\)
h/\(\sin^2x+\sin^23x=\cos^2x+\cos^23x\)
k/\(4\sin2x=\dfrac{\cos^2x-\sin^2x}{\cos^6x+\sin^6x}\)
mọi người giải giúp em với em đang cần gấp ạ