Rút gọn biểu thức sau:
A = 3 . ( 2x-1 ) - / x-5 /
Bài 1: Rút gọn các biểu thức sau:
a) (x-5)(2x+1)-2x(x-3)
b) (2+3x)(2-3x)+(3x+4)^2
\(a,\left(x-5\right)\left(2x+1\right)-2x\left(x-3\right)\\ =x.2x-5.2x+x-5-2x.x-2x.\left(-3\right)\\ =2x^2-10x+x-5-2x^2+6x\\ =2x^2-2x^2-10x+x+6x-5\\ =-3x-5\)
\(b,\left(2+3x\right)\left(2-3x\right)+\left(3x+4\right)^2\\ =\left[2^2-\left(3x\right)^2\right]+\left[\left(3x\right)^2+2.3x.4+4^2\right]\\=4-9x^2+\left(9x^2+24x+16\right)\\ =24x+20\)
Rút gọn các biểu thức sau:
a. (x+5)2-4x(2x+3)2-(2x-1)(x+3)(x-3)
b. -2x(3x+2)(3x-2)+5(x+2)2-(x-1)(2x-1)(2x+1)
a: Ta có: \(\left(x+5\right)^2-4x\left(2x+3\right)^2-\left(2x-1\right)\left(x+3\right)\left(x-3\right)\)
\(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)
\(=x^2+10x+25-16x^3-48x^2-36x-2x^3+18x+x^2-9\)
\(=-18x^3-46x^2-8x+16\)
Rút gọn các biểu thức sau:
a) (2x-1)2+(x+3)2-5.(x-7).(x+7)
b) (x-2).(x2+2x+4)-(25+x3)
`a)(2x-1)^2+(x+3)^2-5(x-7)(x+7)`
`=4x^2-4x+1+x^2+6x+9-5(x^2-49)`
`=5x^2-5x^2-4x+6x+1+9+245`
`=2x+255`
`b)(x-2)(x^2+2x+4)-(25+x^3)`
`=x^3-8-x^3-25=-33`
Lời giải:
a.
$(2x-1)^2+(x+3)^2-5(x-7)(x+7)$
$=4x^2-4x+1+(x^2+6x+9)-5(x^2-49)$
$=5x^2+2x+10-(5x^2-245)=2x+255$
b.
$(x-2)(x^2+2x+4)-(25+x^3)=(x^3-2^3)-(25+x^3)$
$=-8-25=-33$
a: \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)\)
\(=4x^2-4x+1+x^2+6x+9-5x^2+245\)
\(=2x+255\)
b: \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x^3+25\right)\)
\(=x^3-8-x^3-25\)
=-33
Rút gọn các biểu thức sau:
a) 2x(x+3) – 3x2(x+2) + x(3x2 + 4x – 6)
b) 3x(2x2 – x) – 2x2(3x+1) + 5(x2 – 1)
a) 2x(x+3) – 3x2(x+2) + x(3x2 + 4x – 6)
= (2x . x + 2x . 3) – (3x2 . x + 3x2 . 2) + (x . 3x2 + x . 4x – x . 6)
= 2x2 + 6x – (3x3 + 6x2) + (3x3 + 4x2 - 6x)
= 2x2 + 6x – 3x3 – 6x2 + 3x3 + 4x2 - 6x
= (– 3x3 + 3x3 ) + (2x2 - 6x2 + 4x2 ) + (6x – 6x)
= 0 + 0 + 0
= 0
b) 3x(2x2 – x) – 2x2(3x+1) + 5(x2 – 1)
= [3x . 2x2 + 3x . (-x)] – (2x2 . 3x + 2x2 . 1) + [5x2 + 5 . (-1)]
= 6x3 – 3x2 – (6x3 +2x2) + 5x2 – 5
= 6x3 – 3x2 – 6x3 - 2x2 + 5x2 – 5
= (6x3 – 6x3 ) + (-3x2 – 2x2 + 5x2) – 5
= 0 + 0 – 5
= - 5
Rút gọn các biểu thức sau:
a) 4x2(5x2 + 3) – 6x(3x3 – 2x + 1) – 5x3 (2x – 1)
b) \(\dfrac{3}{2}x\left( {{x^2} - \dfrac{2}{3}x + 2} \right) - \dfrac{5}{3}{x^2}(x + \dfrac{6}{5})\)
a) 4x2(5x2 + 3) – 6x(3x3 – 2x + 1) – 5x3 (2x – 1)
= 4x2 . 5x2 + 4x2 . 3 – [6x . 3x3 + 6x . (-2x) + 6x . 1] – [5x3 . 2x + 5x3 . (-1)]
= 20x4 + 12x2 – (18x4 – 12x2 + 6x) – (10x4 – 5x3)
= 20x4 + 12x2 - 18x4 + 12x2 - 6x - 10x4 + 5x3
= (20x4 – 18x4 - 10x4 ) + 5x3 + (12x2 + 12x2 ) – 6x
= -8x4 + 5x3 + 24x2 – 6x
\(\begin{array}{l}b)\dfrac{3}{2}x\left( {{x^2} - \dfrac{2}{3}x + 2} \right) - \dfrac{5}{3}{x^2}(x + \dfrac{6}{5})\\ = \dfrac{3}{2}x.{x^2} + \dfrac{3}{2}x.( - \dfrac{2}{3}x) + \dfrac{3}{2}x.2 - (\dfrac{5}{3}{x^2}.x + \dfrac{5}{3}{x^2}.\dfrac{6}{5})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - (\dfrac{5}{3}{x^3} + 2{x^2})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - \dfrac{5}{3}{x^3} - 2{x^2}\\ = (\dfrac{3}{2}{x^3} - \dfrac{5}{3}{x^3}) + ( - {x^2} - 2{x^2}) + 3x\\ = \dfrac{{ - 1}}{6}{x^3} - 3{x^2} + 3x\end{array}\)
bỏ dấu giá trị tuyệt đối rồi rút gọn các biểu thức sau:a,|2x-4|+|x-3|;b, |x-5|+|x+6|
a. \(\left|2x-4\right|+\left|x-3\right|\)
Với \(x< 2\), biểu thức trở thành
\(-\left(2x-4\right)-\left(x-3\right)\)
\(=-2x+4-x+3\)
\(=-3x+7\)
Với \(2\le x< 3\), biểu thức trở thành
\(\left(2x-4\right)-\left(x-3\right)\)
\(=2x-4-x+3\)
\(=x-1\)
Với \(x\ge3\), biểu thức trở thành
\(\left(2x-4\right)+\left(x-3\right)\)
\(=2x-4+x-3\)
\(=3x-7\)
b. \(\left|x-5\right|+\left|x+6\right|\)
Với \(x< -6\), biểu thức trở thành
\(-\left(x-5\right)-\left(x+6\right)\)
\(=-x+5-x-6\)
\(=-2x-1\)
Với \(-6\le x< 5\), biểu thức trở thành
\(-\left(x-5\right)+\left(x+6\right)\)
\(=-x+5+x+6\)
\(=11\)
Với \(x\ge5\), biểu thức trở thành
\(\left(x-5\right)+\left(x+6\right)\)
\(=x-5+x+6\)
\(=2x+1\)
Rút gọn biểu thức sau:
a) |x-2|+|2x-1|
b) |4-3x|-|2x+1|
a: Đặt A=|x-2|+|2x-1|
TH1: x<1/2
=>2x-1<0 và x-2<0
A=|x-2|+|2x-1|
=2-x+1-2x
=-3x+3
TH2: 1/2<=x<2
=>2x-1>=0 và x-2<0
=>A=2-x+2x-1=x+1
TH3: x>=2
=>2x-1>0 và x-2>=0
=>A=2x-1+x-2=3x-3
b: Đặt B=|4-3x|-|2x+1|
=|3x-4|-|2x+1|
TH1: x<-1/2
=>\(2x+1< 0;3x-4< 0\)
=>\(B=4-3x-\left(-2x-1\right)\)
\(=4-3x+2x+1\)
\(=5-x\)
TH2: \(-\dfrac{1}{2}< =x< \dfrac{4}{3}\)
=>\(2x+1>=0;3x-4< 0\)
=>\(B=4-3x-\left(2x+1\right)\)
\(=4-3x-2x-1=-5x+3\)
TH3: \(x>=\dfrac{4}{3}\)
=>\(3x-4>=0;2x+1>0\)
=>\(B=3x-4-\left(2x+1\right)\)
\(=3x-4-2x-1\)
=x-5
Rút gọn mỗi biểu thức sau:
a, (2x-1)\(^2\)-(x-3).(x+3)-1969
b, (2x-3y).(2x+3y)-(2x-y)\(^2\)
c, (x+3y)\(^2\)+(x-y).(x+y)+280
\(a,\left(2x-1\right)^2-\left(x-3\right)\left(x+3\right)-1969\\ =4x^2-4x+1-x^2+9-1969\\ =3x^2-4x-1959\)
\(b,\left(2x-3y\right)\left(2x+3y\right)-\left(2x-y\right)^2\\ =4x^2-9y^2-4x^2+4xy-y^2\\ =8y^2+4xy=4y\left(2y+x\right)\)
\(c,\left(x+3y\right)^2+\left(x+y\right)\left(x-y\right)+280\\ =x^2+6xy+9y^2+x^2-y^2+280\\ =2x^2+8y^2+6xy+280\)
a: \(\left(2x-1\right)^2-\left(x-3\right)\cdot\left(x+3\right)-1969\)
\(=4x^2-4x+1-x^2+9-1969\)
\(=3x^2-4x-1959\)
b: \(\left(2x-3y\right)\left(2x+3y\right)-\left(2x-y\right)^2\)
\(=4x^2-9y^2-4x^2+4xy-y^2\)
\(=-10y^2+4xy\)
a)\(\text{( 2 x − 1 )^2− ( x − 3 ) ( x + 3 ) − 1969}\)
\(\text{= 4x^2 − 4x + 1 − x^2 + 9 − 1969}\)
\(\text{=3x^2− 4 x − 1959}\)
b) \(\text{( 2 x − 3 y ) ( 2 x + 3 y ) − ( 2 x − y )^2}\)
=\(\text{= 4 x^2− 9 y^2− 4 x^2 + 4 x y − y^2}\)
\(\text{= -10 y^2+ 4 x y = -2 y ( 5 y -2 x )}\)
c)\(\text{( x + 3 y )^2 + ( x + y ) ( x − y ) + 280}\)
\(\text{= x^2 + 6 x y + 9 y^2 + x^2 − y^2 + 280}\)
\(\text{= 2 x^2 + 8 y^2 + 6 x y + 280}\)
Bài I. Rút gọn các biểu thức sau:
a) 3x(2x+1)+ (2x - 3)(x+1),
b) x(3x - 2)2 + 3(x-2)(x+2)
c) (2x+1)(4x² - 2x+1)-2x(2x+3)(2x - 3)-(x-3)²
a: Ta có: \(3x\left(2x+1\right)+\left(2x-3\right)\left(x+1\right)\)
\(=6x^2+3x+2x^2+2x-3x-3\)
\(=8x^2+2x-3\)
Bài 1: Rút gọn các biểu thức sau:
a) 3x23x2 - 2x( 5+ 1,5x) +10
b) 7x ( 4y- x) + 4y( y-7x) - 2( 2y22y2 - 3,5x