Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bou99
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 15:02

Bài 2 : 

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca 

<=> a^2 + b^2 + c^2 = ab + bc + ca 

<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca 

<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0 

<=> a = b = c 

Nguyễn Huy Tú
25 tháng 7 2021 lúc 15:07

Bài 1 : 

a^2 + b^2 + 9 = ab + 3a + 3b 

<=> 2a^2 + 2b^2 + 18 = 2ab + 6a + 6b 

<=> a^2 - 2ab + b^2 + a^2 - 6a + 9 + b^2 - 6a + 9 = 0 

<=> ( a - b)^2 + ( a - 3)^2 + ( b - 3)^2 = 0 

Dấu ''='' xảy ra khi a = b = 3 

Nguyễn Việt Lâm
25 tháng 7 2021 lúc 15:14

1.

\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)

2.

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

VUX NA
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 8 2021 lúc 15:58

Với mọi số thực dương a;b;c ta có BĐT:

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Tương tự, ta có:

\(VT\le\dfrac{ab}{ab\left(a^2+b^2\right)+ab}+\dfrac{bc}{bc\left(b^2+c^2\right)+bc}+\dfrac{ca}{ca\left(c^2+a^2\right)+ca}\)

\(VT\le\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(VT\le\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\)

Ta lại có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow VT\le\dfrac{xyz}{xy\left(x+y\right)+xyz}+\dfrac{xyz}{yz\left(y+z\right)+xyz}+\dfrac{xyz}{zx\left(z+x\right)+xyz}=1\)

Pox Pox
Xem chi tiết
HD Film
20 tháng 10 2019 lúc 11:29

a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

=> a=b=c

Khách vãng lai đã xóa
HD Film
20 tháng 10 2019 lúc 11:35

b, \(0=\left(a+b+c\right)^3=a^3+b^3+c^3+6abc+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3ca^2\)

\(=a^3+b^3+c^3+6abc+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)

\(=a^3+b^3+c^3+6abc-3abc-3abc-3abc\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khách vãng lai đã xóa
HD Film
20 tháng 10 2019 lúc 11:43

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Từ (a) -> hoặc a+b+c = 0 hoặc a=b=c. Vậy ko thể khẳng định như vây

Khách vãng lai đã xóa
Lê Châu Linh
Xem chi tiết
Thắng Nguyễn
29 tháng 9 2017 lúc 17:03

Đặt \(THANG=\frac{\left(b+c\right)\sqrt{a^2+1}}{\sqrt{b^2+1}\sqrt{c^2+1}}\)

\(=\frac{\left(b+c\right)\sqrt{a^2+ab+bc+ca}}{\sqrt{b^2+ab+bc+ca}\sqrt{c^2+ab+bc+ca}}\)

\(=\frac{\left(b+c\right)\sqrt{\left(a+b\right)\left(a+c\right)}}{\sqrt{\left(b+c\right)\left(a+b\right)}\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\frac{\left(b+c\right)}{\sqrt{\left(b+c\right)}\sqrt{\left(b+c\right)}}=\frac{\left(b+c\right)}{\sqrt{\left(b+c\right)^2}}\)

\(=\frac{b+c}{b+c}=1\left(b,c\in R^+\right)\)

Lê Châu Linh
29 tháng 9 2017 lúc 8:12

chứng minh bằng 1

Lê Đức Lương
Xem chi tiết
Bùi Minh Quân
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Trên con đường thành côn...
27 tháng 8 2021 lúc 21:55

undefined

Ngô Thành Chung
27 tháng 8 2021 lúc 22:00

Văn Hoang Tran
Xem chi tiết
dinh huong
Xem chi tiết
Văn Hoang Tran
Xem chi tiết