Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lục Kim
Xem chi tiết
Trên con đường thành côn...
14 tháng 8 2021 lúc 19:33

undefined

thiên bình dễ thương
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 6 2022 lúc 9:57

Câu 3:

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2\cdot1+a+4=4-10-b\\2-a+4=25-25-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-6-4-2=-12\\-a+b=-6\end{matrix}\right.\)

=>a=-3; b=-9

Kaylee Trương
Xem chi tiết
Aybrer Estafania
Xem chi tiết
Nguyễn An Ninh
6 tháng 5 2023 lúc 8:22

a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)

dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.

Aybrer Estafania
7 tháng 5 2023 lúc 18:57

tại sao a7 + b = 5a + 2b lại bằng  2a = b vậy ạ

 

Hoàng Lê Huy
Xem chi tiết
Akai Haruma
30 tháng 4 2022 lúc 23:32

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

Akai Haruma
30 tháng 4 2022 lúc 23:34

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

Akai Haruma
30 tháng 4 2022 lúc 23:37

Bài 3:

$f(0)=a.0^3+b.0^2+c.0+d=d=5$

$f(1)=a+b+c+d=4$

$a+b+c=4-d=-1(*)$
$f(2)=8a+4b+2c+d=31$

$8a+4b+2c=31-d=26$

$4a+2b+c=13(**)$
$f(3)=27a+9b+3c+d=88$
$27a+9b+3c=88-d=83(***)$

Từ $(*); (**); (***)$ suy ra $a=\frac{1}{3}; b=13; c=\frac{-43}{3}$

Vậy.......

Minh Hiếu
Xem chi tiết
Trần Minh Hoàng
4 tháng 1 2023 lúc 8:34

Xét f(x) là hằng số thì \(f\left(x\right)\equiv0\).

Xét f(x) khác hằng.

Ta có \(a^2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}+2\Rightarrow a^2-2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}\)

\(\Rightarrow\left(a^2-2\right)^2=\dfrac{3}{4}+\dfrac{4}{3}+2=\dfrac{49}{12}\Rightarrow a^4-4a^2-\dfrac{1}{12}=0 \).

Bằng cách đồng nhất hệ số, dễ dàng chứng minh được đa thức \(P\left(x\right)=x^4-4x^2-\dfrac{1}{12}\) bất khả quy trên \(\mathbb{Q}[x]\).

Do đó ta có P(x) là đa thức tối tiểu của a, tức mọi đa thức hệ số hữu tỉ khác nhận a là nghiệm đều chia hết cho P(x).

Vì f(x) là đa thức hệ số nguyên nên \(f\left(x\right)\) chia hết cho \(12P\left(x\right)=12x^4-48x^2-1\).

Vậy \(f\left(x\right)=K\left(x\right)\left(12x^4-48x^2-1\right)\), với \(K\in\mathbb Z[x]\) bất kì.

luffy_toán học
Xem chi tiết
luffy_toán học
18 tháng 3 2015 lúc 20:53

các bạn giải hộ mình gấp

 

Phuong Nguyen dang
Xem chi tiết
Nguyễn Thị Thu
Xem chi tiết
Nguyễn Huy Tú
12 tháng 4 2017 lúc 19:19

\(f\left(x\right)=x^2+3mx+5\)

Vì f(x) nhận x = 2 là 1 nghiệm nên:

\(2^2+3.m.2+5=0\)

\(\Rightarrow6m+9=0\)

\(\Rightarrow m=\dfrac{-3}{2}\)

Vậy \(m=\dfrac{-3}{2}\)

huyền thoại đêm trăng
12 tháng 4 2017 lúc 19:23

Hỏi đáp Toán