Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Hiếu

Dùng hệ thức truy hồi

Tìm đa thức f(x) với hệ số nguyên, biết đa thức đó nhận \(a=\sqrt[4]{\dfrac{3}{4}}+\sqrt[4]{\dfrac{4}{3}}\) làm nghiệm 

Trần Minh Hoàng
4 tháng 1 2023 lúc 8:34

Xét f(x) là hằng số thì \(f\left(x\right)\equiv0\).

Xét f(x) khác hằng.

Ta có \(a^2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}+2\Rightarrow a^2-2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}\)

\(\Rightarrow\left(a^2-2\right)^2=\dfrac{3}{4}+\dfrac{4}{3}+2=\dfrac{49}{12}\Rightarrow a^4-4a^2-\dfrac{1}{12}=0 \).

Bằng cách đồng nhất hệ số, dễ dàng chứng minh được đa thức \(P\left(x\right)=x^4-4x^2-\dfrac{1}{12}\) bất khả quy trên \(\mathbb{Q}[x]\).

Do đó ta có P(x) là đa thức tối tiểu của a, tức mọi đa thức hệ số hữu tỉ khác nhận a là nghiệm đều chia hết cho P(x).

Vì f(x) là đa thức hệ số nguyên nên \(f\left(x\right)\) chia hết cho \(12P\left(x\right)=12x^4-48x^2-1\).

Vậy \(f\left(x\right)=K\left(x\right)\left(12x^4-48x^2-1\right)\), với \(K\in\mathbb Z[x]\) bất kì.


Các câu hỏi tương tự
Lê Song Phương
Xem chi tiết
Vu Nguyen
Xem chi tiết
Trần Quốc Khanh
Xem chi tiết
Minh Hiếu
Xem chi tiết
Vũ Trọng Khánh
Xem chi tiết
Hi Mn
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết
Thầy Cao Đô
Xem chi tiết
Nguyễn Hàn Nhi
Xem chi tiết