giải pt
|x-3|+|x-4|=11
Giải pt x + 4 căn x + 3 + 2 căn 3 - 2x = 11
giải pt
\(\dfrac{x-2}{2+x}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\)
ĐKXĐ : \(x\ne\pm2\)
PT \(\Leftrightarrow\dfrac{\left(x-2\right)^2-3\left(x+2\right)}{x^2-4}=\dfrac{2\left(x-11\right)}{x^2-4}\)
\(\Leftrightarrow\left(x-2\right)^2-3\left(x+2\right)=2\left(x-11\right)\)
\(\Leftrightarrow x^2-4x+4-3x-6=2x-22\)
\(\Leftrightarrow x^2-4x+4-3x-6-2x+22=0\)
\(\Leftrightarrow x^2-9x+20=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\) ( TM )
Vậy ...
ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x-2}{2+x}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\)
\(\Leftrightarrow\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2-4x+4-3x-6=2x-22\)
\(\Leftrightarrow x^2-7x-2-2x+22=0\)
\(\Leftrightarrow x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=5\left(nhận\right)\end{matrix}\right.\)
Vậy: S={4;5}
Giải pt \(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
\(\left(x-1\right)+4.\left(\sqrt{x+3}-2\right)+2.\left(\sqrt{3-2x}-1\right)=0\)
\(x-1+\dfrac{4.\left(x+3-4\right)}{\sqrt{x+3}+2}+\dfrac{2.\left(3-2x-1\right)}{\sqrt{3-2x}+1}=0\)
=> x-1+\(\dfrac{4.\left(x-1\right)}{\sqrt{x+3}+2}+\dfrac{4.\left(1-x\right)}{\sqrt{3-2x}+1}=0\)
=> (x-1).\(\left(\dfrac{4}{\sqrt{x+3}+2}+\dfrac{4}{\sqrt{3-2x}+1}\right)=0\)
=> x=1 (do \(\dfrac{4}{\sqrt{x+3}+2}+\dfrac{4}{\sqrt{3-2x}+1}>0\)
Giải bất pt: \(\left|\left(x+3\right)\left(x-1\right)-5\right|\le\left(x+1\right)^4-11\)
Giải PT:
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Chỗ Bunyakovsky mình sửa lại 1 chút:
\(\left(1.\sqrt{x-2}+1.\sqrt{4-x}\right)^2\) \(\le\left(1^2+1^2\right)\left[\left(\sqrt{x-2}\right)^2+\left(\sqrt{4-x}\right)^2\right]\)
\(=2\left(x-2+4-x\right)\) \(=4\)
\(\Rightarrow\sqrt{x-2}+\sqrt{4-x}\le2\)
Hơn nữa \(x^2-6x+11=\left(x-3\right)^2+2\ge2\)
Từ đó dấu "=" phải xảy ra ở cả 2 BĐT trên, tức là:
\(\left\{{}\begin{matrix}\sqrt{x-2}=\sqrt{4-x}\\x-3=0\end{matrix}\right.\Leftrightarrow x=3\)
Vậy pt đã cho có nghiệm duy nhất \(x=3\)
Đính chính
...Áp dụng bất đẳng thức Bunhiacopxki ta có :
\(\left(1.\sqrt[]{x-2}+1.\sqrt[]{4-x}\right)^2\le\left(1^2+1^2\right)\left(x-2+4-x\right)=2.2=4\)
\(\Rightarrow\sqrt[]{x-2}+\sqrt[]{4-x}\le2\)
mà \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
\(pt\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt[]{x-2}}=\dfrac{1}{\sqrt[]{4-x}}\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=4-x\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=6\\x=3\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Vậy \(x=3\) là nghiệm của pt (1)
\(\sqrt[]{x-2}+\sqrt[]{4-x}=x^2-6x+11\left(1\right)\)
\(\Leftrightarrow1.\sqrt[]{x-2}+1.\sqrt[]{4-x}=x^2-6x+11\)
Điều kiện xác định khi và chỉ khi
\(\left\{{}\begin{matrix}x-2\ge0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\) \(\Leftrightarrow2\le x\le4\)
Áp dụng bất đẳng thức Bunhiacopxki, ta có :
\(1.\sqrt[]{x-2}+1.\sqrt[]{4-x}\le\left(1^2+1^2\right).\left(x-2+4-x\right)=2.2=4\)
\(\Rightarrow\sqrt[]{x-2}+\sqrt[]{4-x}\le4\)
\(pt\left(1\right)\Leftrightarrow x^2-6x+11=4\)
\(\Leftrightarrow x^2-6x+7=0\)
\(\Delta'=9-7=2>0\)
⇒ pt có 2 nghiệm phân biệt \(x=3\pm\sqrt[]{2}\)
Vậy nghiệm của pt đã cho là \(x=3\pm\sqrt[]{2}\)
Giải pt
\(11\sqrt{4-x}-26=-7x+2\sqrt{1+x}+\sqrt{4+3x-x^2}\)
giải pt và bất pt
a) |x+5|=3x+1
b)\(\frac{3\left(x-1\right)}{4}+1\ge\frac{x+2}{3}\)
c)\(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)
giải pt : \(\sqrt[11]{x-4}+\sqrt[11]{x-5}+\sqrt[11]{2x-9}=2\)
giải pt \(\sqrt{x+3}+\sqrt{10-x}=x^2-7x+11\)
đk -3 =< x =< 10
\(\sqrt{x+3}-2+\sqrt{10-x}-3=x^2-7x+6\)
\(\Leftrightarrow\dfrac{x+3-4}{\sqrt{x+3}+2}+\dfrac{10-x-9}{\sqrt{10-x}+3}=\left(x-6\right)\left(x-1\right)\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x+3}+2}+\dfrac{1-x}{\sqrt{10-x}+3}=\left(x-6\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x+3}+2}-\dfrac{1}{\sqrt{10-x}+3}-x+6\ne0\right)=0\Leftrightarrow x=1\)(tm)