tìm giá trị nhỏ nhất của biểu thức 30/(4x-4x^2-31)
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của biểu thức: 4x^2-4x-9
Ta có: 4x2-4x-9 = (4x2-4x+1)-10 = (2x-1)2-10 ≥ -10
Dấu "=" xảy ra ⇔ x=1/2
\(4x^2-4x-9=\left(2x-1\right)^2-10\)
Vì \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2-10\ge10\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)
4x2-4x - 9
= 4x2 - 4x +1 - 10
= (2x -1)2 - 10 lớn hơn hoặc bằng -10
GTNN của 4x2-4x - 9 xảy ra khi (2x -1)2 = 0
2x-1 = 0
2x = 1
x=\(\dfrac{1}{2}\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
tìm giá trị nhỏ nhất của biểu thức A= 4x^2+3y^2-2xy-10x-14y+30
Giúp mình nhé
Ta có C=x^2-4x-4 / x^2-4x+5
=x^2-4x+4-8/x^2-4x+4+1
=(x^2-4x+4)-8 / (x^2-4x+4)+1
=(x-2)^2 -8/ (x-2)^2 +1
=Vì (x-2)^2 >hoặc = 0
=>(x-2)^2-8 > hoặc = -8 và (x-2)^2+1> hoặc =1 (với mọi x)
Dấu ''='' xảy ra <=> (x-2)^2 =0
<=>x - 2 = 0
<=>x =2
<=> Giá trị nhỏ nhất của biểu thức C là -8/1=-8
Vậy giá trị nhỏ nhất của biểu thức C là minC= - 8 khi x=2
Chúc bạn làm bài tốt ! Mình ko chắc câu trả lời của mình đúng đâu , nhưng cũng ko phải là sai
Tìm giá trị nhỏ nhất của biểu thức: 4x2-4x-1
\(4x^2-4x-1=\left(2x\right)^2-2.2x+1-2=\left(2x-1\right)^2-2\ge-2\)
Vật GTNN của biểu thức là -2
tìm giá trị nhỏ nhất của biểu thức b=4x^2-4x-3|2x-1|+3
Lời giải:
$B=4x^2-4x-3|2x-1|+3=(4x^2-4x+1)-3|2x-1|+2$
$=(2x-1)^2-3|2x-1|+2=|2x-1|^2-3|2x-1|+2$
$=(|2x-1|-1,5)^2+\frac{1}{4}\geq \frac{1}{4}$
Vậy $B_{\min}=\frac{1}{4}$. Giá trị này đạt tại $|2x-1|=1,5$
$\Leftrightarrow x=\frac{5}{4}$ hoặc $x=\frac{-1}{4}$
Tìm giá trị nhỏ nhất của biểu thức A,B,C và giá trị lớn nhất của biểu thức D,E:
A= x2-4x+1 D= 5-8x-x2
B= 4x2+4x+11 E= 4x-x2+1
C= (x-1).(x+3).(x+2).(x+6)
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
A= x2 - 4x +1
= x2 - 4x + 4 - 3
= (x-2)2 -3
Ta có (x-2)2 ≥ 0 ∀ x
⇒ (x-2)2 -3 ≥ -3 ∀ x
Vậy AMin= -3 tại x=2
B= 4x2+4x+11
= 4x2+4x+1+10
= (2x+1)2+10
Ta có (2x+1)2 ≥ 0 ∀ x
⇒ (2x+1)2+10 ≥ 10 ∀ x
Vậy BMin=10 tại x= \(\dfrac{-1}{2}\)
C=(x-1)(x+3)(x+2)(x+6)
= (x-1)(x+6)(x+3)(x+2)
= (x2+5x-6) (x2+5x+6)
= (x2+5x)2 -36
Ta có (x2+5x)2 ≥ 0 ∀ x
⇒ (x2+5x)2 -36 ≥ -36 ∀ x
Vậy CMin=-36 tại x=0 hoặc x= -5
Tìm giá trị nhỏ nhất của biểu thức A, B, C và giá trị lớn nhất của biểu thức D, E:
A = x2 – 4x + 1
B = 4x2 + 4x + 11
C = (x – 1)(x + 3)(x + 2)(x + 6)
D = 5 – 8x – x2
E = 4x – x2 +1
Tính giá trị nhỏ nhất:
\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)
Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$
Vậy $A_{\min}=-3$
Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$
$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$
Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$
$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$
$=(x^2+5x)^2-36\geq 0-36=-36$
Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Tìm giá trị lớn nhất:
$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$
Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$
Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$
$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$
Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$