Cho phương trình m 2 - 3 m + 2 x + m 2 + 4 m + 5 = 0 . Tìm tất cả các giá trị thực của tham số m để phương trình đã cho có nghiệm đúng với mọi x thuộc R.
A. m = −2.
B. m = −5.
C. m = 1.
D. Không tồn tại.
Cho phương trình \(mx^2+\left(m-1\right)x+m-1=0\)
a) Tìm m để phương trình vô nghiệm.
b) Tìm m để phương trình có hai nghiệm trái dấu.
c) Tìm m để phương trình có hai nghiệm x1; x2 sao cho \(x_1^2+x_2^2-3>0\)
a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)
Với \(m\ne0\) pt vô nghiệm khi:
\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)
\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)
\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)
c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)
\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)
Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
Cho phương trình : x - 2x + m -1 =0 (1) . Định m để phương trình vô nghiệm (2) tìm m để phương trình có 2 nghiệm sao cho( x1+x2)^2 -x1.x2=3
cho phương trình: x2_(m+1)x-2(m+3)=0
a)tìm m để phương trình có nghiệm là x=2
b)chứng minh phương trình luôn có 2 nghiệm mọi m
b, \(\Delta=\left(m+1\right)^2+8\left(m+3\right)=m^2+2m+1+8m+24\)
\(=m^2+10m+25=\left(m+5\right)^2\ge0\forall m\)
Vậy pt luôn có 2 nghiệm
a) Thay x = 2 vào phương trình ta có
\(2^2-\left(m+1\right)2-2\left(m+3\right)=0\Leftrightarrow m=2\)
Vậy để phương trình có nghiệm là x = 2 thì m = 2
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
Bài 5: Cho phương trình: 2(m ^ 2 - 9) * x + m - 3 = 0
a)Giải phương trình khi m=4
b)Tìm m để phương trình nghiệm đúng với mọi x
a) m = 4 thì PT trở thành:
\(2.\left(4^2-9\right)x+4-3=0\)
\(\Leftrightarrow10x+1=0\)
\(\Leftrightarrow x=-\dfrac{1}{10}\)
Vậy PT có nghiệm \(x=-\dfrac{1}{10}\)
b) Đặt nghiệm của PT là \(x_0\)
\(\Rightarrow2\left(m^2-9\right)x_0+m-3=\forall x_0\)
\(\Leftrightarrow2\left(m-3\right)\left(m+3\right)x_0+m-3=0\forall x_0\)
\(\Leftrightarrow\left[2\left(m+3\right)+x_0\right]\left(m-3\right)=0\forall x_0\)
\(\Rightarrow m-3=0\\ \Leftrightarrow m=3\)
Vậy m = 3 thì phương trình nghiệm đúng với mọi x
Cho phương trình :
\(x^2-2\left(m+2\right)x+m^2+m+3=0\)
a.giải phương trình khi m = 0
b.tìm m để phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
a, bạn tự làm
b, \(\Delta'=\left(m+2\right)^2-\left(m^2+m+3\right)=m^2+4m+4-m^2-m-3\)
\(=3m+1\)để pt có 2 nghiệm \(m\ge-\dfrac{1}{3}\)
Ta có \(\dfrac{x_1^2+x_2^2}{x_1x_2}=4\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\Rightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)
\(\Rightarrow4\left(m+2\right)^2-6\left(m^2+m+3\right)=0\)
\(\Leftrightarrow4m^2+16m+16-6m^2-6m-18=0\)
\(\Leftrightarrow-2m^2+10m-2=0\Leftrightarrow m^2-5m+1=0\Leftrightarrow m=\dfrac{5\pm\sqrt{21}}{2}\)(tm)
bài 9 các cặp phương trình sau có tương đương hay không?
d, x+2=0 và \(\dfrac{x}{x+2}=0\)
bài 8 cho phương trình (m\(^2\)-9)x-3=m. Giải phương trình trong các trường hợp sau:
a,m=2 b,m=3 c,m=-3
Bài 9:
Không, vì $x+2=0$ có nghiệm duy nhất $x=-2$ còn $\frac{x}{x+2}=0$ ngay từ đầu đkxđ đã là $x\neq -2$ (cả 2 pt không có cùng tập nghiệm)
Bài 8:
a. Khi $m=2$ thì pt trở thành:
$(2^2-9)x-3=2$
$\Leftrightarrow -5x-3=2$
$\Leftrightarrow -5x=5$
$\Leftrightarrow x=-1$
b.
Khi $m=3$ thì pt trở thành:
$(3^2-9)x-3=3$
$\Leftrightarrow 0x-3=3$
$\Leftrightarrow 0=6$ (vô lý)
c. Khi $m=3$ thì pt trở thành:
$[(-3)^2-9]x-3=-3$
$\Leftrightarrow 0x-3=-3$ (luôn đúng với mọi $x\in\mathbb{R}$)
Vậy pt vô số nghiệm thực.
Câu 1: Cho phương trình: x\(^2\) - 5x + m = 0 (m là tham số)
a) Giải phương trình trên khi m = 6
b) Tìm m để phương trình trên có hai nghiệm x\(_1\), x\(_2\) thỏa mãn: \(\left|x_1-x_2\right|=3\)
Câu 2: Cho phương trình 2x\(^2\) - 6x + 3m + 2 = 0 ( với m là tham số). Tìm các giá trị của m để phương trình đã cho có hai nghiêm x\(_1\), x\(_2\) thảo mãn: \(x^3_1+x^3_2=9\)
1. cho phương trình x^2-2(m-3)x-2m-10=0 tìm giá trị nhỏ nhất của biểu thức A = x1^2 +x2^2-x1x2
2. cho phương trình x^2-(2m-1)x +m^2-m =0 . tìm m để phương trình có 2 nghiệm phân biệt x1;x2 thoả mãn |x1 -2x| bé hơn hoặc bằng 5
3. cho phương trình x^2 - (2m-1)x -2m -11 =0 . tìm m để phương trình có 2 nghiệm phân biệt x1 ;x2 thoả mãn |x1 -x2| bé hơn hoặc bằng 4
4.hai ca nô cùng rời bến A đến bến B .ca nô thứ nhất mỗi giờ chạy nhanh hơn ca nô thứ hai 5km nên đến B sớm hơn ca nô thứ hai 30 phút .tính vận tốc mỗi ca nô biết quãng đường AB dài 75 km
3:
\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)
=4m^2-4m+1+8m+44
=4m^2+4m+45
=(2m+1)^2+44>=44>0
=>Phương trình luôn có hai nghiệm pb
|x1-x2|<=4
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)
=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)
=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)
=>0<=4m^2+4m+45<=16
=>4m^2+4m+29<=0
=>(2m+1)^2+28<=0(vô lý)
cho phương trình : x^2-2(m-1)x+3-m^2=0 . tìm m để phương trình có nghiệm x1,x2 thỏa mãn:x1+x2=3
Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(3-m^2\right)\)
\(=\left(2m-2\right)^2-4\left(3-m^2\right)\)
\(=4m^2-8m+4-12+4m^2\)
\(=8m^2-8m-8\)
\(=8\left(m^2-m-1\right)\)
Để phương trình có nghiệm thì \(\text{Δ}\ge0\)
\(\Leftrightarrow m^2-m-1\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge\dfrac{\sqrt{5}+1}{2}\\m\le\dfrac{-\sqrt{5}+1}{2}\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=3-m^2\end{matrix}\right.\)
Ta có: \(x_1+x_2=3\)
\(\Leftrightarrow2m-2=3\)
\(\Leftrightarrow2m=5\)
hay \(m=\dfrac{5}{2}\)(thỏa ĐK)