Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(3-m^2\right)\)
\(=\left(2m-2\right)^2-4\left(3-m^2\right)\)
\(=4m^2-8m+4-12+4m^2\)
\(=8m^2-8m-8\)
\(=8\left(m^2-m-1\right)\)
Để phương trình có nghiệm thì \(\text{Δ}\ge0\)
\(\Leftrightarrow m^2-m-1\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge\dfrac{\sqrt{5}+1}{2}\\m\le\dfrac{-\sqrt{5}+1}{2}\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=3-m^2\end{matrix}\right.\)
Ta có: \(x_1+x_2=3\)
\(\Leftrightarrow2m-2=3\)
\(\Leftrightarrow2m=5\)
hay \(m=\dfrac{5}{2}\)(thỏa ĐK)