Cho hai đa thức P ( x ) = − 6 x 5 − 4 x 4 + 3 x 2 − 2 x ; Q ( x ) = 2 x 5 − 4 x 4 − 2 x 3 + 2 x 2 − x − 3
Gọi M(x) = P(x) - Q(x). Tính M(-1)
A. 11
B. -10
C. -11
D. 10
Cho hai đa thức:
\(A(x) = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6\) và \(B(x) = - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4}\).
a) Tìm đa thức M(x) sao cho \(M(x) = A(x) + B(x)\).
b) Tìm đa thức C(x) sao cho \(A(x) = B(x) + C(x)\).
a) \(M(x) = A(x) + B(x) \\= 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4} \\=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)\\= {x^2} - 2.\)
b) \(A(x) = B(x) + C(x) \Rightarrow C(x) = A(x) - B(x)\)
\(\begin{array}{l}C(x) = A(x) - B(x)\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - ( - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4})\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 + 5{x^2} - 7{x^3} - 5x - 4 + 4{x^4}\\ =(4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)\\= 8{x^4} - 14{x^3} + 11{x^2} - 10x - 10\end{array}\)
Bài 4: Cho hai đa thức:
P(x)= \(x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4\)
Q(x)= \(5x^4-x^5+4x^2-6+9x^3-8+x^{^{ }5}\)
a) Sắp xếp các hạng tử của mỗi đa thức trên theo luỹ thừa giảm dần của biến
b) Tìm hệ số cao nhất và hệ số tự do của đa thức P(x)
a: \(P\left(x\right)=x^5+2x^4-9x^3-x\)
\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)
b: Hệ số cao nhất của P(x) là 1
Hệ số tự do của P(x) là 0
`a)`
`@P(x)=x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4`
`P(x)=x^5+(7x^4-5x^4)-9x^3-(2x^2-2x^2)-x`
`P(x)=x^5+2x^4-9x^3-x`
`@Q(x)=5x^4-x^5+4x^2-6+9x^3-8+x^5`
`Q(x)=(-x^5+x^5)+5x^4+9x^3+4x^2-(6+8)`
`Q(x)=5x^4+9x^3+4x^2-14`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`b)` Đa thức `P(x)` có:
`@` Hệ số cao nhất: `1`
`@` Hệ số tự do: `0`
1. Cho hai đa thức: R(x)=-8(x^4)+6(x^3)+2(x^2)+5x-1 và S(x)=(x^4)-8(x^3)+2x+3. Tính: a) R(x)+S(x); b) R(x)-S(x). 2. Xác định bậc của hai đa thức là tổng, hiệu của: A(x)=8(x^5)+6(x^4)+2(x^2)-5x+1 và B(x)=8(x^5)+8(x^3)+2x-3.
Cho các đa thức:
P(x) = \(3x^2-5+x^4-x+1\)
Q(x) =\(6-2x+3x^3+x^4-3x^5\)
Tính P(x) - Q(x) và Q(x) - P(x). Có nhận xét gì về các hệ số của hai đa thức tìm được ?
\(P\left(x\right)-Q\left(x\right)\)
\(=x^3+3x^3-x-4-x^4-3x^3+3x^5+2x-6\)
\(=3x^5+x-10\)
\(P\left(x\right)-Q\left(x\right)=3x^2-5+x^4-x+1-6+2x-3x^3-x^4+3x^5\\ =3x^5-3x^3+3x^2+x-10\\ Q\left(x\right)-P\left(x\right)=6-2x+3x^3+x^4-3x^5-3x^2+5-x^4+x-1=-3x^5+3x^3-3x^2-x+10\)
Đó là 2 biểu thức đối nhau
Các hệ số của 2 đa thức đối nhau
Bài 4: Cho hai đa thức:
P(x)= \(x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4\)
Q(x)= \(5x^4-x^5+4x^2-6+9x^3-8+x^5\)
a) Sắp xếp các hạng tử của mỗi đa thức trên theo luỹ thừa giảm dần của biến
b) Tìm hệ số cao nhất và hệ số tự do của đa thức P(x)
c)Tính M(x)=P(x)+Q(x)
d)Tính M(2), M(-2),M(\(\dfrac{1}{2}\))
Các bạn chỉ giải phần D thôi nha còn những bạn muốn giải hết thì cũng không sao
a)\(P\left(x\right)=x^5+2x^4-9x^3-x\)
\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)
b) Sửa Tìm hệ số cao nhất và hệ số tự do của đa thức Q(x)
hệ số cao nhất :9
hệ số tự do :- 14
c)\(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(\Leftrightarrow M\left(x\right)=x^5+2x^4-9x^3-x+5x^4+9x^3+4x^2-14\)
\(M\left(x\right)=x^5+6x^4-x-14\)
d)\(M\left(2\right)=2^5+6.2^4-2-14=32-96-2-14=-80\)
\(M\left(-2\right)=\left(-2\right)^5+6.\left(-2\right)^4+2-14=-32-96+2-14=-140\)
\(M\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^5+6.\left(\dfrac{1}{2}\right)^4-\dfrac{1}{2}-14=\dfrac{1}{32}+\dfrac{3}{8}-\dfrac{1}{2}-14=-\dfrac{475}{32}\)
bài 13:
Cho hai đa thức P(x)= x^5-x^4 và Q(x)= x^4-x^3
Tìm đa thức R(x) sao cho P(x)+Q(x)+R(x) là đa thức không
cho hai đa thưc:
A(x)= 2x+ 5x5 - 2x6 + x + x4
B(x)= 6x6 _ 5x5 + 2x4 + 2x + 1
a) thu gọn và tìm bậc của đa thức
b) tìm da thức C(x) = A(x) + B(x)
c) tìm nghiệm của đa thức C(x)
Cho hai đa thức P(x)= x^5 - x^4 và Q(x)= x^4 - x^3
Tìm đa thức R(x) sao cho P(x) + Q(x) + R(x) là đa thức không
Giải:
Ta có:
\(P\left(x\right)+Q\left(x\right)+R\left(x\right)=0\)
\(\Leftrightarrow R\left(x\right)=-P\left(x\right)-Q\left(x\right)\)
\(\Leftrightarrow R\left(x\right)=-\left(x^5-x^4\right)-\left(x^4-x^3\right)\)
\(\Leftrightarrow R\left(x\right)=-x^5+x^4-x^4+x^3\)
\(\Leftrightarrow R\left(x\right)=x^3-x^5\)
Vậy ...
Cho đa thức \(M(x) = 2{x^4} - 5{x^3} + 7{x^2} + 3x\).
Tìm các đa thức N(x), Q(x) sao cho:
\(N(x) - M(x) = - 4{x^4} - 2{x^3} + 6{x^2} + 7\)
và \(M(x) + Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2\)
Theo đề bài ta có \(M(x) = 2{x^4} - 5{x^3} + 7{x^2} + 3x\)
\(\begin{array}{l}M(x) + Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2\\ \Rightarrow Q(x) = (6{x^5} - {x^4} + 3{x^2} - 2) - (2{x^4} - 5{x^3} + 7{x^2} + 3x)\\ \Rightarrow Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2 - 2{x^4} + 5{x^3} - 7{x^2} - 3x\\Q(x) = 6{x^5} - 3{x^4} + 5{x^3} - 4{x^2} - 3x - 2\end{array}\)
Theo đề bài ta có :
\(\begin{array}{l}N(x) - M(x) = - 4{x^4} - 2{x^3} + 6{x^2} + 7\\ \Rightarrow N(x) = - 4{x^4} - 2{x^3} + 6{x^2} + 7 + 2{x^4} - 5{x^3} + 7{x^2} + 3x\\ \Rightarrow N(x) = - 2{x^4} - 7{x^3} + 13{x^2} + 3x + 7\end{array}\)
Cho hai đa thức:
\(A = 6{x^4} - 4{x^3} + x - \dfrac{1}{3};B = - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3}\)
Tính A + B và A - B
\(\begin{array}{l}A + B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) + ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3}\\ = (6{x^4} - 3{x^4}) + ( - 4{x^3} - 2{x^3}) - 5{x^2} + (x + x) + ( - \dfrac{1}{3} + \dfrac{2}{3})\\ = 3{x^4} - 6{x^3} - 5{x^2} + 2x + \dfrac{1}{3}\\A - B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) - ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} + 3{x^4} + 2{x^3} + 5{x^2} - x - \dfrac{2}{3}\\ = (6{x^4} + 3{x^4}) + ( - 4{x^3} + 2{x^3}) + 5{x^2} + (x - x) + ( - \dfrac{1}{3} - \dfrac{2}{3})\\ = 9{x^4} - 2{x^3} + 5{x^2} - 1\end{array}\)\(\begin{array}{l}A + B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) + ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3}\\ = (6{x^4} - 3{x^4}) + ( - 4{x^3} - 2{x^3}) - 5{x^2} + (x + x) + ( - \dfrac{1}{3} + \dfrac{2}{3})\\ = 3{x^4} - 6{x^3} - 5{x^2} + 2x + \dfrac{1}{3}\\A - B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) - ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} + 3{x^4} + 2{x^3} + 5{x^2} - x - \dfrac{2}{3}\\ = (6{x^4} + 3{x^4}) + ( - 4{x^3} + 2{x^3}) + 5{x^2} + (x - x) + ( - \dfrac{1}{3} - \dfrac{2}{3})\\ = 9{x^4} - 2{x^3} + 5{x^2} - 1\end{array}\)